Creating Packages in R

Once you have a set of R functions (and optionally datasets and C
or Fortran source code), the package.skeleton() function makes
it very easy to create an R package. You pass this function the
name of a package you wish to create along with a vector containing
the names of R objects in the current environment to be included
in the package. A directory with the name of the program will be
created (by default in the current directory) containing a skeleton
DESCRIPTION file, along with man, R, and src subdirectories.
Skeleton documentation files for each of the objects you passed to
package.skeleton() can be found in the man subdirectory. In

addition, a README file contains instructions on how to proceed.

Source Code and Dynamic Loading of Libraries

If you are using any C or Fortran code in your package, you need to
copy the necessary files into the src directory. The package will
run R CMD SHLIB on these files to create a shared object file of the
same name as your package. To insure that the library is properly
loaded, you should modify the file which has been placed in the R
directory to include a .First.1lib() function, which will be called
whenever your library is loaded. A function like this one is usually
sufficient:

" First.lib" <-

function(libname, pkgname)

library.dynam("package" ,pkgname,libname)

where the first argument to library.dynam() is your package

name in quotes without any suflix.

Filling in the Documentation Skeletons

For each function and dataset included in your package, there will
be a skeleton .Rd file in the man directory. The skeleton file looks
something like this:

\name{somefunction}
\alias{somefunction}
%- Also NEED an ’\alias’ for EACH other topic documented here.
\title{ "“function to do ... 7 }
\description{
“~ A concise (1-5 lines) description of what the function does. ~~
}
\usage{
somefunction(argl, arg2, arg3, arg4 = 10)
}
%- maybe also ’usage’ for other objects documented here.
\argumentsq{
\item{argl}{ ~~Describe \code{argl} here~~ }
\item{arg2}{ ~~Describe \code{arg2} here”~ }
\item{arg3}{ ““Describe \code{arg3} here~~ }
\item{argd4}{ ~“Describe \code{argd4} here™~ }
}
\detailsq{
7 If necessary, more details than the __description__ above ™~
}
\valueq{
“Describe the value returned
If it is a LIST, use

Filling in the Documentation Skeletons(cont’d)

\item{compl }{Description of ’compil’}
\item{comp2 }{Description of ’comp2’}

}

\references{ “put references to the literature/web site here ~
\author{ ~“who you are™™ }

\note{ ~~“further notes™ }

“Make other sections like Warning with \section{Warning }{....}

\seealso{ ~“~“objects to See Also as \code{\link{"“fun~"3}}, ~~~ }
\examples{

##---- Should be DIRECTLY executable !! ----

##-- ==> Define data, use random,

help(data=index) for the standard data sets.

\keyword{ “kwdl }} at least one, from doc/KEYWORDS
\keyword{ ~“kwd2 }% __ONLY ONE__ keyword per line

Filling in the DESCRIPTION Skeleton
The initial DESCRIPTION file looks like this:

Package: packagename

Type: Package

Title: What the package does (short line)

Version: 1.0

Date: 2005-10-10

Author: Who wrote it

Maintainer: Who to complain to <yourfault@somewhere.net>
Description: More about what it does (maybe more than one line)

License: What license is it under?

Additional fields for Depends, Suggests, and URL, among others,
can be added to this file. The building process will add a Built
field, which needs to be removed before rebuilding the package.

Testing and building the package

If your R package doesn’t contain any source code, you can proceed
to building the package, but if it does contain source code you need
to test to insure that the package builds properly. To test the

build, use a command like
R CMD check packagename
Try to resolve as many errors and warnings as possible at this

stage, although it may be difficult or impossible to remove them

all. Finally, when you’re ready to create the package, type
R CMD build packagename
This will result in a gzipped tar file in the current directory,

containing the package. You can now test it, either on the same

system you built it on, or, preferably, some other architecture.

Calling C programs from R

There are three steps to making a C routine available to R:

1. Properly building a shared object suitable for dynamic loading.
This is most easily accomplished with the command

R CMD SHLIB list-of-cfiles

. Dynamically loading the shared object into a running version
of R. This is done with dyn.load () for a non-packaged
function, and with library.dynam (via .First.1lib()) for a

function in a package.

3. Accessing the function from within R using the .C() function.

Building the shared object

Usually the SHLIB command will create a suitable shared object,
but sometimes additional flags need to be sent to the preprocessor
(for example -I flags to get headers from other directories), the C
compiler, or the loader (for example -L flags specifying additional
directories to be searched for supporting libraries). Such options
can be set by creating a file in the compilation directory called

Makevars with definitions of any of the following variables:

PKG_CPPFLAGS pre-processor flags
PKG_CFLAGS C compiler flags
PKG_LIBS loader flags

Dynamically Loading the shared object

A simple call of the form

dyn.load("./myobject.so")

before using your package should be sufficient for most simple
cases. If you wish to automate the process, you can call the
is.loaded () function inside of any function that requires the
shared object, and do the loading only if necessary:

if(!'is.loaded("somefunc"))

dyn.load("./myobject.so")

Here, somefunc represents the name of any of the C functions
contained in your shared object.

Invoking your function using .C()

The .C() takes as its first argument the name of one of the
functions defined in your shared object, and additional arguments
for each of the objects that is passed to the function through its
argument list. The function also accepts arguments called NAOK,
DUP, and PACKAGE.

All function calls through .C() are performed using
call-by-address; this means that all of the arguments to your C
function must be declared as pointers. Furthermore, the usual
mechanism of returning a value through the function name will not
work; all information must be passed through the argument list.
Often this means writing a small wrapper function, as illustrated in
the next slide.

Creating wrapper functions

Suppose you have a function with a prototype such as the following:

double dosomething(double *x, long n,double alpha);

To use the function from R, a wrapper similar to the following

could be constructed:

void Rdosomething(double *x,long *n,double *alpha,double *result)
{

double theresult;

theresult = dosomething(x,*n,*alpha);

*result = theresult;

11

Argument types in .C()

When the .C() function is called R manipulates its internal
pointers so that they are suitable for use in the C environment, and
it is critical that it knows the type of each of the arguments. The
mapping of C types to R types is shown below; functions like
as.double or as.integer can be used when passing arguments to

.C() to make certain the correct types of arguments are passed.

C Type R Type

floatx* single
double* double
longx* integer

char*x* character

A Simple Example

Consider the following C program, which generates a vector of random

numbers:

#include <stdlib.h>
#include <limits.h>
#include <time.h>

void uni(long *n,double *res)
{ time_t now;
unsigned long a=800000003, c=78900934;
unsigned long x;
long 1i;
x = time(&now) ;
for(i=0;i<*n;i++){
X =ax*xzx + c;
res[i] = (double)x / ULONG_MAX;

}
}

Note that both arguments to the function are pointers. If the program is

stored in the file uni.c, the command

R CMD SHLIB uni.c

will create a shared object called uni.so in the current directory.

Calling the C routine

It’s usually a good idea to write a function which will insure that
the shared object is loaded and that any necessary memory is
"allocated” in the R environment before the C function is called.
For this example, here’s such a function:

"myuni" = function(n){
result = double(n) # or rep(O,n)
if(!is.loaded(symbol.C("uni")))
dyn.load("./uni.so")

z = .C("uni",as.integer(n) ,result=as.double(result))
z$result

}

The .C() function returns a list containing the values of each of the
arguments passed to your C function; note that by naming the
components, desired results can be easily extracted. In this
example, the result could also be accessed through z[[2]].

Memory Allocation

In the previous example, the memory necessary to hold the result
vector was “allocated” in the R environment, not the C
environment. Since R manages this memory, this approach should
be used whenever feasible.

If you do need to allocate memory from within your C routine, you
have two options. You can use the normal C library memory
allocation routines, but remember that there will be no automatic
freeing of memory, so it’s your responsibility to call free()
appropriately.

The other option is to use internal functions provided by R, which
will free any allocated memory when the execution of .C() is
complete. The function prototypes for the available routines are:

char* R_alloc(long n, int size); # memory is not zeroed
char* S_alloc(long n, int size); # memory is zeroed

char* S_realloc(char *p,long new, long old, int size) #like realloc(3)

Using Matrices with .C()

In R, matrices are stored as one-dimensional vectors, stacked by
rows, and you must store matrices in the same way in your C

program in order for the .C() interface to work. Consider the

following function, which scales element of a matrix by the

maximum value of its column:

void mscale(double *mat,long *nrow,long *ncol)
{

long 1i,j;

double *matnow;

double themax;

for (i=0;i<*ncol;i++){

matnow = mat + 1 * *nrow;

themax = *(matnow++) ;

for(j=1; j<*nrow; j++,matnow++)

if (*matnow > themax)

themax = *matnow;

matnow = mat + 1 * *nrow;

for (j=0; j<*nrow; j++,matnow++)
*matnow /= themax;

Using Matrices with .C() (cont’d)

The following function can be used to access the C program:

scalebycol = function(x){
nrow = nrow(x)
ncol = ncol(x)
if(!is.loaded(symbol.C("mscale")))dyn.load("./scalemat.so")

z = .C("mscale",x=as.double(x),as.integer(nrow),as.integer(ncol))
z$x

}

A quick test reveals a small problem:

> scalebycol (matrix(rnorm(15),5,3))
[1] 1.0000 -1.4739 -0.4714 0.4115 -0.2359 0.9684 -1.0833

[8] -0.9865 -1.3479 1.0000 -0.8453 -1.0376 1.0000 0.8600
[15] -0.6168

After returning from .C(), the result is no longer a matrix.

Using Matrices with .C() (cont’d)

Since the elements of the matrix are stored in the correct order

internally, we can simply return matrix(z$x,nrow,ncol) instead

of z$x.

An alternative to calling matrix on the returned value is to avoid
the use of as.double and specify the storage mode of the matrix
directly, before the call to .C():

scalebycol = function(x){
nrow = nrow(x)

ncol = ncol(x)
if(!is.loaded(symbol.C("mscale")))dyn.load("./scalemat.so")

storage.mode(x) = "double"

.C("mscale",x=x,as.integer(nrow) ,as.integer(ncol))

