
An Introduction
to

Python

Phil Spector

Statistical Computing Facility
Department of Statistics

University of California, Berkeley

1

Perl vs. Python

• Perl has a much larger user base.

• Perl has more modules available.

• Facilities for multidimensional arrays and object orientation
were grafted on to Perl, but are built in from the start in
Python.

• Python’s learning curve is far shorter than Perl’s

• Python is more fun than Perl

2

Core Python Concepts

• small basic language

• modules (with private namespaces) for added functionality
the import statement provides access to modules

• true object oriented language

• strong typing

• exception handling
try/except clause can trap any error

• indentation is important

3

Invoking python

• Type python at the command line – starts an interactive
session – type control-D to end

• Type python programname

• If the first line of your program is

#!/usr/bin/env python

and the program is made executable with the chmod +x

command, you can invoke your program through its name

4

Getting Help in Python

• Online documentation may be installed along with Python.

• All documentation can be found at http://python.org .

• In an interactive Python session, the help function will provide
documentation for most Python functions.

• To view all available methods for an object, or all of the
functions defined within a module, use the dir function.

5

Functions versus Methods

Most objects you create in Python will have a set of methods
associated with them. Instead of passing the object as an argument
to a function, you “invoke” the method on the object by following
the object name with a period (.) and the function call.

For example, to count the number of times the letter ’x’ appears in
a string, you could use the following:

>>> str = ’xabxyz’
>>> str.count(’x’)
2

You can see the names of all possible methods in an interactive
session using the dir command.

6

Strings in Python

Strings are a simple form of a Python sequence – they are stored as
a collection of individual characters.

There are several ways to initialize strings:

• single (’) or double (") quotes

• triple quotes (’’’ or """ – allows embedded newlines

• raw strings (r’...’ or r"...") – ignores special characters

• unicode strings (u’...’ or u"...") – supports Unicode
(multiple byte) characters

7

Special Characters

Sequence Meaning Sequence Meaning

\ continuation \\ literal backslash

\’ single quote \" double quote

\a bell \b backspace

\e escape character \0 null terminator

\n newline \t horizontal tab

\f form feed \r carriage return

\0XX octal character XX \xXX hexadecimal value XX

Use raw strings to treat these characters literally.

8

String Operators and Functions

• + – concatenation

• * – repetition

• [i] – subscripting (zero-based; negative subscripts count from
the end)

• [i:j] – slice from i-th character to one before the j-th
(length of the slice is j - i)

• [i:] – slice from i-th character to the end

• [:i] – slice from the first character to one before the i-th

• len(string) – returns number of characters in string

9

String Methods

Name Purpose

join Insert a string between each element of a sequence

split Create a list from “words” in a string

splitlines Create a list from lines in a string

count Count the number of occurences of substring

find Return the lowest index where substring is found

index Like find, but raises ValueError if not found

rfind Return the highest index where substring if found

rindex Like rfind, but raises ValueError if not found

center Centers a string in a given width

10

String Methods (continued)

Name Purpose

ljust Left justifies a string

lstrip Removes leading whitespace

rjust Right justifies a string

rstrip Removes trailing whitespace

strip Removes leading and trailing whitespace

capitalize Capitalize the first letter of the string

lower Make all characters lower case

swapcase Change upper to lower and lower to upper

title Capitalize the first letter of each word in the string

upper Make all characters upper case

11

Numbers in Python

• integers - ordinary integers with the default range of the
computer

initialize without decimal point

• longs - “infinite” precision integers – immune to overflow
initialize without decimal point and a trailing “L”

• float - double precision floating point numbers
initialize using decimal point

• complex - double precision complex numbers
initialize as a + bj

Hexadecimal constants can be entered by using a leading 0X or 0x;
octal constants use a leading 0.

12

Operators and Functions for Numbers

• Usual math operators: + - * / %

• Exponentiation: **

• Bit shift: << >>

• Core functions: abs, round, divmod
many more in math module

If both operands of the division operator are integers, Python uses
integer arithmetic. To insure floating point arithmetic, use a
decimal point or the float function on at least one of the operands.

13

Type Conversion

When Python encounters an object which is not of the appropriate
type for an operation, it raises a TypeError exception. The usual
solution is to convert the object in question with one of the
following conversion functions:

• int - integer

• long - long

• float - float

• complex - complex

• str - converts anything to a string

14

Sequence Types

We’ve already seen the simplest sequence type, strings. The other
builtin sequence types in Python are lists, tuples and dictionaries.
Python makes a distinction between mutable sequences (which can
be modified in place) and immutable sequences (which can only be
modified by replacement): lists and dictionaries are mutable, while
strings and tuples are immutable.

Lists are an all-purpose “container” object which can contain any
other object (including other sequence objects). Tuples are like
lists, but immutable. Dictionaries are like lists, but are indexed by
arbitrary objects, instead of consecutive integers.

The subscripting and slicing operations presented for strings also
work for other sequence objects, as does the len function.

15

Sequence Elements

• Lists - use square brackets ([])
Empty list: x = []

List with elements: x = [1,2,"dog","cat",abs]

Access using square brackets: print x[2]

• Tuples - use parentheses (())
Empty tuple: x = ()

Tuple with elements: x = (1,2,"dog","cat",abs)

Tuple with a single element: x = (7,)

Access using square brackets: print x[2]

• Dictionary - use curly braces ({ })
Empty dictionary: x = {}

Dictionary with elements:
x = {"dog":"Fido","cat":"Mittens’’}

Access using square brackets: print x["cat"]

16

Nesting of Sequence Types

Sequence types can be as deeply nested as necessary. This makes it
very easy to store complex data structures in basic Python objects:

nestlist = [1,2,"dog","cat",(20,30,40),

{"one":("uno",1),"two":("dos",2),"three":("tres",3)}]

print nestlist[5]["one"][0] #prints uno

nestlist[1] = 14 #ok - lists are mutable

nestlist[4][2] = "something" #fails - tuples are immutable

nestlist[4] = "something" #ok to replace whole tuple

The individual elements of lists and dictionaries can be modified in

place, but this is not true for strings and tuples.

17

Indexing and Slicing

In addition to extracting parts of lists through subscripting and
slicing, you can also modify parts of lists (in place), by refering to a
list slice on the left hand side of the equal sign:

>>> x = [1,2,3,4,5,6,7,8,9,10]

>>> x[3:5]

[4, 5]

>>> x[3:5] = [40,50,60]

>>> x

[1, 2, 3, 40, 50, 60, 6, 7, 8, 9, 10]

Note that the replacement slice can be of a different size.

Insert arbitrary elements into a list using a slice of size zero:

>>> x = [1,2,3,4,5,6,7,8,9,10]

>>> x[4:4] = [10,20,30]

>>> x

[1, 2, 3, 4, 10, 20, 30, 5, 6, 7, 8, 9, 10]

18

List Operators

Lists support concatenation and repetition like strings, but to
concatenate an element to the end of a list, that element must be
made into a list.
[1,2,3] + 4 results in a TypeError, but
[1,2,3] + [4] yields a list with four elements.
Similarly for repetition
0 * 10 results in the integer 0, but
[0] * 10 results in a list containing ten zeroes.

The in operator provides a fast way to tell if something is an
element of a list. For example, to find unique values in a list:

unique = []

for e in thelist:

if e not in unique:

unique = unique + [e]

19

List Methods

Name Purpose

append Adds a single element to a list

count Counts how many times an element appears

extend Adds multiple elements to a list

index Returns lowest index of an element in a list

insert Inserts an object into a list

pop Returns and removes first element of a list

remove Removes first occurence of an element from a list

reverse Reverses a list in place

sort Sorts a list in place

Notice that joining together the elements of a list into a string is
done with the join method for strings.

20

Sorting Lists in Python

The sort method for lists accepts an optional function argument
which defines how you want the elements of the list sorted. This
function should accept two arguments and return -1 if the first is
less than the second, 0 if they are equal, and 1 if the first is greater
than the second.

Suppose we wish to sort words disregarding case. We could define
the following function, and pass it to sort:
>>> def cmpcase(a,b):
... return cmp(a.lower(),b.lower())
...
>>> names = [’Bill’,’fred’,’Tom’,’susie’]
>>> names.sort()
>>> names
[’Bill’, ’Tom’, ’fred’, ’susie’]
>>> names.sort(cmpcase)
>>> names
[’Bill’, ’fred’, ’susie’, ’Tom’]

21

Dictionaries

Dictionaries are very convenient because it’s often easier to
associate a string with a piece of data than remember its position
in an array. In addition, the keys of a Python dictionary can be
any Python object, not just strings.

The following methods are provided for dictionaries:

Name Purpose

clear remove all keys and values

get access values through key with default

has key tests for presence of key

keys returns all keys

values returns all values

22

Using Dictionaries for Counting

Since it is an error to refer to a non-existent key, care must be
taken when creating a dictionary. Suppose we wish to count the
number of times different words appear in a document.

1. Use exceptions
try:

counts[word] = counts[word] + 1
except KeyError:

counts[word] = 1

2. Check with has key

if counts.has_key(word):
counts[word] = counts[word] + 1

else:
counts[word] = 1

3. Use get

counts[word] = counts.get(word,0) + 1

23

Printing

While the print statement accepts any Python object, more
control over printed output can be achieved by using formatting
strings combined with the “%” operator.

A formatting string contains one or more %-codes, indicating how
corresponding elements (in a tuple on the right hand side of the %

operator) will be printed. This table shows the possible codes:

Code Meaning Code Meaning

d or i Decimal Integer e or E Exponential Notation

u Unsigned Integer g or G “Optimal” Notation

o Octal Integer s Display as string

h or H Hexadecimal Integer c Single character

f Floating Point Number % Literal percent sign

24

Examples of Formatting

Field widths can be specified after the % sign of a code:
>>> animal = ’chicken’
>>> print ’%20s’ % animal

chicken

With floating point arguments, the number of decimal places can
be specified:
>>> x = 7. / 3.
>>> print x
2.33333333333
>>> print ’%5.2f’ % x
2.33

When formatting more than one item, use a tuple, not a list.
>>> print ’Animal name: %s Number: %5.2f’ % (animal,x)
Animal name: chicken Number: 2.33

The result of these operations is a string
>>> msg = ’Animal name: %s Number: %5.2f’ % (animal,x)
>>> msg
’Animal name: chicken Number: 2.33’

25

File Objects

The open function returns a file object, which can later by
manipulated by a variety of methods. This function takes two
arguments: the name of the file to be opened, and a string
representing the mode. The possible modes are:

String Meaning

r Open file for reading; file must exist.

w Open file for writing; will be created if it doesn’t exist

a Open file for appending; will be created if it doesn’t exist

r+ Open file for reading and writing; contents are not destroyed

w+ Open file for reading and writing; contents are destroyed

a+ Open file for reading and writing; contents are not destroyed

By default, files are opened with mode "r". A ’b’ can be
appended to the mode to indicate a binary file.

26

Using File Objects: Reading

Suppose we wish to read the contents of a file called ”mydata”.
First, create the appropriate file object.

try:

f = open(’mydata’,’r’)

except IOError:

print "Couldn’t open mydata"

sys.exit(1)

Note the try/except block; every call to open should be in such a
block. Once the file is opened, the following methods for reading
are available:

• readline - reads the next line of the file

• readlines - reads an entire file into a list - one line per element

• read - reads a file into a string. Optional argument reads a
specified number of bytes

27

Reading from a File: Example

Suppose we have a file with one number on each line, and we want
to add together all the numbers:

try:
f = open(’numbers’,’r’)

except IOError:
print "Couldn’t open numbers"
sys.exit(1)

total = 0 # initialize
while 1:

line = f.readline()
if not line:

break
line = line[:-1] # removes newline
total = total + int(line) # type conversion!

print ’total=%d’ % total

28

Using File Objects: Writing

If a file is opened with a mode of ’w’ or ’a’ the following methods
can be used to write to the file:

• write - writes its argument to the specified file

• writelines - writes each element of a list to the specified file

These methods do not automatically add a newline to the file. The
print statement automatically adds a newline, and can be used
with file objects using the syntax:

print >> fileobject, string-to-be-printed

This makes it especially easy to change a program that writes to
standard output to one that writes to a file.

29

Standard File Objects

Each time you invoke Python, it automatically creates three file
objects, found in the sys module, representing standard input
(sys.stdin), standard output (sys.stdout) and standard error
(sys.stderr).

These can be used like any other file object.

For example, to write an error message to standard error, you could
use:

print >> sys.stderr, ’Here is an error message’

30

File Objects and Object Oriented Programming

Although they are refered to as file objects, any object which
provides the appropriate methods can be treated as a file, making
it very easy to modify programs to use different sources. Some of
the functions in Python which can provide file-like objects include

• os.popen – pipes (shell command input and output)

• urllib.urlopen – remote files specified as URLs

• StringIO.StringIO – treats a string like a file

• gzip.GzipFile – reads compressed files directly

31

Assignment Statements

To assign a value to a variable, put the name of the variable on the
left hand side of an equals sign (=), and the value to be assigned on
the right hand side:

x = 7

names = [’joe’,’fred’,’sam’]

y = x

Python allows multiple objects to be set to the same value with a
chained assignment statement:

i = j = k = 0

Furthermore, multiple objects can be assigned in one statment
using unrolling:

name = [’john’,’smith’]

first, last = name

x, y, z = 10, 20, 30

32

A Caution About List Assignments

When you perform an assignment, Python doesn’t copy values – it
just makes one variable a reference to another. It only does the
actual copy when the original variable is overwritten or destroyed.
For immutable objects, this creates no surprises. But notice what
happens when we change part of a mutable object that’s been
assigned to another variable:

>>> breakfast = [’spam’,’spam’,’sausage’,’spam’]

>>> meal = breakfast

>>> breakfast[1] = ’beans’

>>> breakfast

[’spam’, ’beans’, ’sausage’, ’spam’]

>>> meal

[’spam’, ’beans’, ’sausage’, ’spam’]

Even though we didn’t explicitly reference meal, some of its values
were modified.

33

True Copy for List Assignments

To avoid this behaviour either assign a complete slice of the list:

meal = breakfast[:]

or use the copy function of the copy module:

import copy

meal = copy.copy(breakfast)

If the original variable is overwritten, a true copy is made:

>>> breakfast = [’spam’,’spam’,’sausage’,’spam’]

>>> meal = breakfast

>>> breakfast = [’eggs’,’bacon’,’beans’,’spam’]

>>> meal

[’spam’, ’spam’, ’sausage’, ’spam’]

You can use the is operator to test if two things are actually
references to the same object.

34

Comparison Operators

Python provides the following comparison operators for
constructing logical tests:

Operator Tests for Operator Tests for

== Equality != Non-equality

> Greater than < Less than

>= Greater than or equal <= Less than or equal

in Membership in sequence is Equivalence

not in Lack of membership not is Non-equivalence

Logical expressions can be combined using and or or.

You can treat logical expressions as integers (True = 1, False = 0).

35

Truth and Falsehood

• Logical comparisons – boolean values True or False

• Numeric values – false if 0, true otherwise.

• Sequence objects – false if they contain no items, true
otherwise.

• Special values:

– None – “null value” always false

– True and False – boolean values with obvious meanings

36

Indentation

People who start programming in Python are often surprised that

indentation, which is mostly cosmetic in most languages, actually

determines the structure of your Python program. Indentation is very

useful for several reasons:

1. Just looking at your program gives you an excellent idea of what its

structure is, and you’re never deceived by improper indentation,

since it will generate a syntax error.

2. Since everyone has to indent, other people’s programs are generally

easier to read and understand.

3. Most experienced programmers agree that good indentation is

useful, but requires too much discipline. In Python, you’re

guaranteed to develop good indentation practices.

Many editors provide facilities for automatic and consistent indentation

(emacs, vim, bbedit, etc.). The majority of indentation problems arise
from using more than one editor to edit the same program.

37

if statement

The if/elif/else statement is the basic tool for conditional
execution in Python. The form is:

if expression:
statement(s)

elif expression:
statement(s)

elif expression:
statement(s)
. . .

else:
statements

The elif and else clauses are optional.

The colon (:) after the expression is required, and the statement(s)
following the if statement must be consistently indented.

You must have at least one statement after an if statement; you
can use the keyword pass to indicate “do nothing”.

38

The for loop

The for loop is the basic construct in Python for iterating over the
elements of a sequence. The syntax is:

for var in sequence:

statements

else:

statements

The colon (:) is required, as is proper indentation.

var represents a copy of each element of sequence in turn, and is local

to the for loop. The else is optional; the statements associated with it

are executed if the for loop runs to completion.

39

The range function

Although the for loop is useful for iterating over each element of a
sequence, there are many tasks which involve more than one
sequence, or which need to change the elements of the sequence,
and the for loop can not handle these tasks. In cases like this, the
range function can be used to generate a set of indices for
subscripting the sequence object(s).

The range function accepts between one and three arguments.
With one argument it returns a sequence from zero to one less than
its argument. With two arguments, it returns a sequence from the
first argument to one less than the second; an optional third
argument specifies an increment for the sequence.

If the sequence which would be generated is very long, the xrange

function can be used. Instead of generating the list in memory, it
returns the next element in the sequence each time it is called.

40

Examples of the range function

Suppose we have two lists, prices and taxes, and we wish to
create a list called total which contains the sum of each element in
the two arrays.

total = len(prices) * [0]

for i in range(len(prices)):

total[i] = prices[i] + taxes[i]

The range function can be used when you need to modify elements
of a mutable sequence:

for i in range(len(x)):

if x[i] < 0:

x[i] = 0

41

The while loop

The while loop is useful when you need to iterate over a
non-sequence. The basic syntax of the while loop is:

while expression:

statements

else:

statements

The statements following the else clause are executed if the expression

is initially false.

As always, remember the colon (:) and proper indentation.

42

Control inside Loops

If you wish to stop the execution of a loop before it’s completed,
you can use the break statement. Control will be transferred to the
next statement after the loop (including any else and elsif

clauses). The break statement is especially useful in Python,
because you can not use an assignment statement as the expression
to be tested in a while loop.

If you wish to skip the remaining statements for a single iteration
of a loop, and immediately begin the next iteration, you can use
the continue statement.

43

while loop example

Suppose we wish to select ten numbers from the integers from 1 to
100, without any number appearing twice. We can use the randint

function of the random module to generate the numbers, and a
while loop to stop when we’ve found our ten numbers.

import random

got = 0

nums = []

while got < 10:

i = random.randint(1,100)

if i not in nums:

nums.append(i)

got = got + 1

44

Example: Counting Fields in a File
import sys

filename = sys.argv[1]

try:
f = open(filename,’r’)

except IOError:
print >>sys.stderr, "Couldn’t open %s" % filename
sys.exit(1)

counts = {}
while 1:

line = f.readline()
if not line:

break
line = line[:-1]
fields = line.split(’,’)
l = len(fields)
counts[l] = counts.get(l,0) + 1

keys = counts.keys()
keys.sort()

for k in keys:
print ’%d %d’ % (k,counts[k])

45

Writing Functions

The def statement creates functions in Python. Follow the
statement with the name of the function and a parenthesized list of
arguments. The arguments you use in your function are local to
that function. While you can access objects outside of the function
which are not in the argument list, you can not change them.

The function definition should end with a colon (:) and the
function body should be properly indented.

If you want your function to return a value, you must use a return

statement.

You can embed a short description of the function (accessed
through the interactive help command) by including a quoted
string immediately after the function definition statement.

46

Example: Writing a Function

def merge(list1, list2):

"""merge(list1,list2) returns a list consisting of the

original list1, along with any elements in list2 which

were not included in list1"""

newlist = list1[:]

for i in list2:

if i not in newlist:

newlist.append(i)

return newlist

47

Named Arguments and Default Values

If you want to set defaults for some arguments, so that you don’t
have to specify all the arguments when you call a function, simply
place an equal sign (=) and the desired default after the variable’s
name in the function definition.

You can use a similar syntax when calling a function to specify the
arguments in an arbitrary order. (By default, arguments must be
passed to a function in the order in which the appear in the
function definition.)

48

Functional Programming: map and filter

Python provides two functions which accepts a function as one of
its arguments.

map takes a function and a list, and applies the function to each
member of the list, returning the results in a second list. As an
example of the map function, suppose we have a list of strings which
need to be converted to floating point numbers. We could use:

values = map(float,values)

filter takes a function which returns True or False as its first
argument and a list as its second. It returns a list containing only
those elements for which the provided function returned True. The
path.isdir function of the os module returns a value of 1 (True)
if its argument is a directory. To extract a list of directories from a
list of files, we could use:

dirs = map(os.path.isdir,files)

49

Functional Programming (cont’d)

You can provide your own functions to map or filter. While you
can always define these functions in the usual way, for simple
one-line expressions a lambda expression can be used to define a
function in place. To illustrate the syntax, consider the following
statement, which removes the last character of each element of the
list lines and stores the result back into the list:

lines = map(lambda x:x[:-1],lines)

The following statements would have equivalent results:

def rmlast(x):

return x[:-1]

lines = map(rmlast,lines)

50

Using Modules
There are three basic ways to use the import statement to make
functions and other objects from modules available in your
program.

1. import module

Objects from module need to be refered to as
module.objectname. Only the module name is actually
imported into the namespace.

2. from module import function

The name function will represent the object of that name
from module. No other symbols are imported from the module
(including the module’s name).

3. from module import *

The names of all of the objects in module are imported into the
namespace. This form of the import statement should only be
used if the module author explicitly says so.

51

Some Useful Python Modules

• re – Perl-style regular expressions

• os – Operating System Interface (system,environ, etc.)

• os.path – automatically imported with os

• sys – access Python’s current environment (argv,exit, etc.)

• copy – true copies of list (copy,deepcopy)

• pickle – serialize Python objects for later retrieval

• cgi – access variables from CGI scripts on web server

• urllib – access URLs as if they were local files

52

