
CGI Programming
Phil Spector

Statistical Computing Facility
Department of Statistics

University of California, Berkeley

1

How a Web Browser Works

When a user enters a URL in a browser, the browser sends a

request to a server for a particular resource, such as an HTML page

or an image, and the server responds by sending some headers that

describe what it’s sending followed by the actual content.

If an HTML page contains images, flash animations, etc. the

process is repeated for each item – the browser then displays

everything in the appropriate way.

If the web server is configured to allow it, requests made to URLs

in certain directories will run a program which generates the

appropriate headers and content instead of just sending a static

page. The mechanism that allows this is known as CGI (Common

Gateway Interface), and such programs are known as CGI

programs.

2

Browser to Server Communication

When a browser makes a request for a resource from a web server,

what information is actually transmitted? We can use a simple

program that sits will echo any information sent to it, and then

point our browser at the program and see what happens.

In python, here’s such a program, which I’ll call webecho:

#!/usr/bin/python

import socket,os,sys

srvsocket = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

srvsocket.bind(("",1888))

srvsocket.listen(5)

while 1:

clisocket,addr = srvsocket.accept()

now = clisocket.recv(1024)

clisocket.send(now)

clisocket.close()

3

A Simple Request

With the webecho program running, let’s make a simple request

and see what happens. If I point a web browser at

http://localhost:1888/something, here’s what’s displayed:

GET /something HTTP/1.1

Host: localhost:1888

User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.7.12)

Gecko/20051010 Firefox/1.0.7 (Ubuntu package 1.0.7)

Accept: text/xml,application/xml,application/xhtml+xml,text/html;

q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

4

HTML Forms

A variety of form elements are available through HTML, and are

presented in an interactive learning tool at:

http://www.w3schools.com/html/html_forms.asp

While I’ll show examples of some form elements, I suggest

consulting the w3schools web page for additional details.

One important type of form element is the type=hidden form.

When you have a multi-screen CGI program, using this type of

form allows you to pass information between the different screens

without the information being visible to the user.

5

Getting information to CGI Programs

What makes CGI programming interesting is that it can get

information from users through various HTML form elements, like

entry fields, drop-down menus, and file upload dialogs. How is that

information transmitted to the server? The first step is producing a

page that contains a form. Here’s the html for a simple form that

will talk to the webecho program:

<form action=’http://localhost:1888’ method=get>

<input type=text name=postvar>

<input type=submit value=’GET’>

</form>

Here’s what shows up in a web browser:

6

Getting information to CGI Programs (cont’d)

When the phrase ”Hello, world” is entered in the form, and the

submit button pressed, here’s what appears in the browser window:

GET /?getvar=Hello%2C+world HTTP/1.1

Host: localhost:1888

User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.7.12)

Gecko/20051010 Firefox/1.0.7 (Ubuntu package 1.0.7)

Accept: text/xml,application/xml,application/xhtml+xml,text/html;

q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Referer: http://springer/~s133ar/cform.html

7

Getting information to CGI Programs (cont’d)

The GET method sends information to the browser by adding

name/value pairs, possibly separated by ampersands (&), to the

URL after a question mark. These URLs are encoded to handle

characters not allowed in URLs. URLs constructed this way will

communicate with the web server regardless of the method used to

send the information, and are the only way to invoke a CGI

program without a surrounding form.

An alternative method of sending information to a web server that

doesn’t display the information in the web server’s address bar is

known as POST. Here’s a form that uses this method:

<form action=’http://localhost:1888’ method=post>

<input type=text name=postvar>

<input type=submit value=’POST’>

</form>

8

The POST method

Here’s the result of submitting Hello, world through the form
using the POST method:

POST / HTTP/1.1

Host: localhost:1888

User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.7.12)

Gecko/20051010 Firefox/1.0.7 (Ubuntu package 1.0.7)

Accept: text/xml,application/xml,application/xhtml+xml,text/html;

q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Referer: http://springer/~s133ar/cform1.html

Content-Type: application/x-www-form-urlencoded

Content-Length: 22

postvar=Hello%2C+world

9

The POST method (cont’d)

The URL is no longer changed, and the name/value pair

information is sent by the browser after it has sent the headers. The

POST method can also be used for file uploads. Here’s the HTML

for a form which will accept a file name and upload it to the server:

<form action=’http://localhost:1888’ method=post

enctype=’multipart/form-data’>

<input type=file name=’myfile’>

<input type=submit value=’Upload’>

</form>

Here’s how it looks in a browser (the Browse button is added

automatically by the browser):

10

File Upload

Suppose I upload a small text file – here’s what the browser sends

to the server:
POST / HTTP/1.1

Host: localhost:1888

User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.7.12) Gecko/20051010 Firefox/1.0.7 (Ubuntu package 1.0.7)

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Referer: http://springer/~s133ar/cform2.html

Content-Type: multipart/form-data; boundary=---------------------------1741722292794821883444112406

Content-Length: 687

-----------------------------1741722292794821883444112406

Content-Disposition: form-data; name="myfile"; filename="small.txt"

Content-Type: text/plain

When you type the address of a web page (i.e. a URL or Universal

Resource Locator) into a browser,or click a link which refers to

a URL, a request is made to a computer on the internet to send the

contents of a web page to your browser. Web pages are written

in a language known as HTML (Hypertext Markup Language), and your

web browser knows how to translate HTML into text, pictures, links,

animations or whatever else the designer of the web page had in mind.

-----------------------------1741722292794821883444112406--

11

File Upload (cont’d)

Uploading the file resulted in the addition of some headers, similar

to those used to send attachments in email messages. The main

difference is that even binary files can be transfered in this way,

since the HTTP protocol does not disturb the eighth bit of its

input the way that SMTP does.

Now that we’ve seen how information is transmitted from the

browser to the server, let’s consider the communication in the

opposite direction.

12

Server to Browser Communication

The underlying principle behind CGI programs is that the standard

output of your CGI program is sent to the browser, so your CGI

programs must generate HTML to produce your desired output.

But just as we saw that the browser inserts some headers before it

sends information (if there is any) to the server, the server needs to

send at least one header line to the browser, to let it know that

HTML will follow. Thus, the first thing that any CGI program

should do is to output a header like this:

Content-type: text/html

It’s also the CGI program’s responsibility to send a completely

empty line to signal the end of the headers.

13

Cookies

Cookies are text stored on a remote computer when they access

your CGI program. Cookies can serve as an alternative to hidden

variables, or as way to remember users when they access your CGI

program again.

Cookies are sent through outgoing headers as follows:

Set-Cookie: cookiename=cookievalue

This produces a cookie that expires when the user closes their

browser.

To make persistent cookies, provide an expiration date as follows

after the above specification:

; expires=Monday, 01-May-06 00:00:00 GMT

The cookie, sent as a name/value pair, will be passed to your CGI

program automatically whenever a browser storing your cookie

returns to your HTML page or CGI program.

14

The CGI Standard

The CGI standard insures that information is properly transfered

between the browser and the web server, and between the web

server and the browser, by running CGI programs in an

appropriate environment.

1. Headers from the browser are converted to environmental

variables.

2. Information from the browser that was after the headers (if

any) is placed in standard input for the CGI program.

3. Standard output from the CGI program is directed to the web

browser.

Each language that is appropriate for CGI scripting will provide

tools to make this information available to your CGI program in a

convenient form.

15

What do CGI Interfaces Provide?

The most important feature that a CGI interface provides is a

means of getting the values of the CGI form variables into the

programming environment. All programs with a CGI interface

provide a way of getting this information regardless of the method

(GET or POST) that was used.

For file uploads, there should an option to avoid reading the entire

file into memory.

Since additional information is provided through environmental

variables, there should be a simple way of accessing these variables.

Since standard output from the CGI program is directed to the

browser, many CGI interfaces provide helper functions to generate

HTML, as well as convenience functions to generate the required

header lines, although it’s often easier to do this by yourself.

16

Some Useful CGI Environmental Variables

Name Contents

HTTP COOKIE Persistent data stored in cookies

HTTP REFERER URL of refering document

HTTP USER AGENT Type of browser being used

QUERY STRING URL Fragment after ?

REMOTE ADDR IP Address of user

REMOTE HOST Hostname of user

REMOTE USER Username, if authentication was used

SERVER NAME Hostname of server

SERVER PORT Port number of server

SERVER SOFTWARE Name and version of server software

17

Security of CGI Programs

Remember that CGI programs are accessible to anyone who can

access the web server that hosts the program, so extra care is

necessary to make sure your programs are secure.

The cardinal rule is to make sure that any user input that gets

passed to the operating system does not contain any unusual

characters.

In fact, it may be wise to avoid calling any operating system

commands that include user input.

It is not uncommon for CGI programs to set their command path

(through environmental variables) to one limited to just those

directories necessary for execution of the CGI program. On a

UNIX system, an example would be a path of /bin:/usr/bin.

18

A Simple Example

A form to allow the user to choose an ice cream flavor is generated

by the following code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

<head title=’Pick a Flavor’>

<html><body>

<h1>Ice Cream Flavors</h1>

Please choose your favorite flavor:

<form action=’http://localhost/~spector/cgi-bin/icecream.py’ method=’post’>

<select name="flavor" >

<option value="Chocolate Chip">Chocolate Chip</option>

<option value="Strawberry">Strawberry</option>

<option value="Rum Raisin">Rum Raisin</option>

<option value="Vanilla">Vanilla</option>

</select>

<input type=’submit’ name=’Submit’>

</form>

</body></html>

19

Processing the Form: Perl

Here’s a perl script to process the ice cream form:

#!/usr/bin/perl

use CGI;

$q = new CGI();

$flavor = $q->param(’flavor’);

print $q->header();

print $q->start_html(’Ice Cream Example’);

print $q->h1(’Ice Cream Flavor’);

print "$flavor is a good choice, I like it too";

print $q->end_html();

20

Processing the Form: Python

#!/usr/bin/python

import cgi

f = cgi.FieldStorage()

flavor = f[’flavor’].value

print ’Content-type: text/html\n\n’

print ’<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">’

print ’<head title="Ice Cream Example">’

print ’<html><body>’

print ’<h1>Ice Cream Flavors</h1>’

print ’%s is a good choice, I like it too’ % flavor

print ’</body></html>’

21

Combo Forms

In the previous example, the proper action had to be coded into

the HTML file that presented the form. In general, separating the

form from the code may make it more difficult to maintain your

program. In addition, it’s often useful to generate HTML forms

through a program, instead of hardcoding the form.

Combo forms are programs that first check to see if form data has

been received – if not, they generate the necessary form, refering

back to themselves as the action. They are especially handy for

multi-form transactions, since they put all of the programs in a

single file, and eliminate the need for separate static HTML pages.

22

Combo Form in Perl
#!/usr/bin/perl

use CGI;

$q = new CGI();

@flavors = (’Chocolate Chip’,’Strawberry’,’Rum Raisin’,’Vanilla’);

if (not defined $q->param()){ # called directly

print $q->header(),

$q->start_html(’Ice Cream Example’),

$q->h1(’Ice Cream Flavors’);

print $q->startform({action=>’icecream1.pl’,method=>’POST’}),

$q->popup_menu(-name=>’flavor’,-values=>\@flavors),

$q->submit(),

$q->end_form(),$q->end_html();

}

else{

$flavor = $q->param(’flavor’);

print $q->header();

print $q->start_html(’Ice Cream Example’);

print $q->h1(’Ice Cream Flavor’);

print "$flavor is a good choice, I like it too";

print $q->end_html();

}

23

Combo Form in Python
#!/usr/bin/python

import cgi

f = cgi.FieldStorage()

print ’Content-type: text/html\n\n’

print ’<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">’

flavors = (’Chocolate Chip’,’Strawberry’,’Rum Raisin’,’Vanilla’)

if len(f.keys()) == 0: # called directly

print ’’’<head><title>Pick a Flavor</title></head>

<html><body>

<h1>Ice Cream Flavors</h1>

Please choose your favorite flavor:

<form action=’icecream1.py’ method=’post’>

<select name="flavor" > ’’’

for f in flavors:

print ’<option value="%s">%s</option>’ % (f,f)

print ’’’</select>

<input type=’submit’ name=’Submit’>

</form>

</body></html>’’’

else:

flavor = f[’flavor’].value

print ’’’<head><title>Ice Cream Example</title></head>

<html><body>

<h1>Ice Cream Flavors</h1>

%s is a good choice, I like it too’’’ % flavor

print ’</body></html>’

24

Debugging CGI Scripts

1. Make sure the Content-type header line is being generated.

2. Make sure that the first line of the CGI program indicates the

location of the executable that will run the program.

3. Make sure that the script is executable, and any files which it

accesses have appropriate permissions for the user under which

the CGI program will run.

4. Execute the script from the command line to find syntax errors

5. Errors are usually redirected to the server’s error log, which

may not be accessible. Redirecting standard error to standard

output will display messages in the browser.

6. There may be special debugging facilities in the language of

your choice.

25

