
Arrays
from

A to Z

Phil Spector

Statistical Computing Facility
Department of Statistics

University of California, Berkeley

http://www.stat.berkeley.edu/~spector

1

What is a SAS Array?

An array in SAS provides a means for repetitively processing
variables using a do-loop. Arrays are merely a convenient way of
grouping variables, and do not persist beyond the data step in
which they are used.

SAS arrays can be used for simple repetitive tasks, reshaping data
sets, and “remembering” values from observation-to-observation.

Arrays can be used to allow some traditional matrix-style
programming techniques to be used in the data step.

2

Array Statement: Syntax

ARRAY name<{nelem}> <$> <<elements <(initial-values)>>;

Examples:

array x x1-x3;

array check{5} _temporary_;

array miss{4} _temporary_ (9 9 99 9);

array dept $ dept1-dept4 (’Sales’,’Research’,’Training’);

array value{3}; * generates value1, value2 and value3;

• All variables in an array must have the same type (numeric or
character).

• An array name can’t have the same name as a variable.

• You must explicitly state the number of elements when using
temporary; in other cases SAS figures it out from context,
generating new variables if necessary.

3

Advanced Features of Arrays

• You can specify the range of subscripts in an array with the
notation start:finish . For example, the declaration:

array income{1997:2000} in1 - in4;

would allow you to refer to income{1997}, income{1998}, etc.
The functions lbound and hbound will return the lowest and
highest indices defined for an array.

• Array names can be used in RETAIN statements, and, when
used with the subscript {*} in PUT or INPUT statements;

• If an array name coincides with the name of a SAS function,
the array will override the function for the duration of the data
step.

• When an array is declared using _temporary_, values of the
elements of the array are not set to missing at the beginning of
each observation.

4

Past and Future

When arrays were first introduced, they were designed to be used
implicitly. The array name itself (unsubscripted) represented the
variable defined in the array statement and the do over; group
allowed repetitive processing. When it was necessary to access
elements by position, a counter variable could be specified, or the
system variable _i_ was used.

While this form of array is supported for legacy applications, it
should be avoided for new work, and explicit subscripting should
always be used.

Version 7 of the SAS system will allow using an array name in a
variable list to represent all the elements of the array, as well as
more flexible syntax for initializing the array.

5

A Simple Example

Suppose we have a data set with 10 variables, named x1,x2,. . .,x10.
Whenever any of these variables has a value of 9, we wish to
replace it with a missing value (.).

data new;

set old;

array x x1-x10;

do i=1 to dim(x);

if x{i} = 9 then x{i} = .;

end;

run;
• Using dim(x) instead of a constant (10) eliminates the need to

know the size of the array.
• Special variable lists (like first -- last or x:) can be very

useful when setting up an array.

6

Using Parallel Arrays

In the previous example, suppose missing values had been coded as
9 for variables x1-x5, and as 99 for the remaining variables.

data new;

set old;

array x x1-x10;

array mval _temporary_ (9 9 9 9 9 99 99 99 99 99);

do i=1 to dim(x);

if x{i} = mval{i} then x{i} = .;

end;

run;

• If you don’t use _temporary__, you usually need to include a
drop statement.

• There’s no limit to the number of parallel arrays you can create.

7

Another Example of the array Statement
The array statement is especially useful when you need to make
logical decisions about a set of variables, since these things can’t be
done with either summary procedures or data set functions.

Consider a data set with variables class1 through class5,
containing the number of classes taken in each year of college, and
we want to find how many years it takes each student to complete
10 courses:

array class class1-class5;

total = 0;

do i = 1 to 5 until(total >= 10);

total = total + class{i};

end;

year = i;

if total lt 10 then year = .;

8

Reshaping Data Sets: I. One to Many

Some SAS procedures require all observations for an experimental
unit to be included in a single observation in the data set; others
require that each individual observation is a separate observation in
the data set. Thus, it is often useful to convert between the two
cases.

Consider a data set with 4 variables (x1-x4) stored as follows:

ID X1 X2 X3 X4

1 17 19 22 24

2 18 14 33 16

3 19 28 31 42

. . .

The goal is to create four observations for each original observation,
one for each variable.

9

Reshaping Data Sets: Example 1

The strategy is to store the four observations in an array, and loop
over the array, creating a new observation each time. A drop or
keep statement is essential for programs like this.

data new;

set old;

array xx x1-x4;

do time=1 to 4;

x = xx{time};

output;

end;

drop x1-x4;

10

A Review of the retain Statement

By default SAS initializes all the variables in a data set to missing
each time it processes a new observations. To “remember” data
from other observations, variables may need to be declared using
the retain statement.

If initial values are specified for any variables in an array, then all
the variables in the array are automatically retained. (Note that
you may still have to reinitialize the variables when you are using
by-groups).

Since arrays declared as _temporary_ do not contain variables, they
do not get reset to missing at the beginning of each observation.

11

Reshaping Data Sets II - One to Many

To create a data set where many observations are combined into a
single observation, we create an array to hold the individual
variables, and then output them after the last observation for each
experimental unit. The basic transformation can be represented as
follows:

Subj Time X

1 1 10

1 2 12

· · · Subj X1 X2 · · · Xn

1 n 8 =⇒ 1 10 12 · · · 8

2 1 19 2 19 7 · · · 21

2 2 7

· · ·
2 n 21

12

Strategy for Many to One Transformations

Programs which merge several observations into a new, single
observation can usually be broken down into four parts:
1. Declaration of arrays and specification of retained variables as

needed.

2. Initialization at the beginning of each experimental unit.
Special care needs to be taken with values stored in arrays.

3. Storage and/or manipulation of each original observation.
While this is the core of the program, it is often surprisingly
short.

4. Final manipulation of the data, and output of a new
observation at the end of each experimental unit.

To implement these ideas, we need to use by statements and
first. and last. variables.

13

Reshaping Data Sets: Example 2

Consider the transformed data set from the previous example.
Suppose we wish to put it back to it’s original form:

data next;
set new;
by id;

array xx x1-x4;
retain xx;

if first.id then do i=1 to 4;xx{i} = .;end;

xx{time} = x;

if last.id then output;
drop x i;

run;

14

Multi-Dimensional Arrays

By providing multiple subscripts in the array statement, you can
create multidimensional arrays. The number of variables in the
array is the product of the ranges of their subscripts, and the
variables in the array are stored by rows.

If you declare a multi-dimensional array without specifying a list of
variables (or the _temporary_ keyword), SAS will create variables
with the array name followed by a single number ranging from 1 to
the total number of elements in the array.

To use the dim, hbound, or lbound functions with
multi-dimensional arrays, use a second argument specifying the
dimension you are interested in. (like dim(x,2)). (You can also use
a function of the form dimn ().)

15

Multi-Dimensional Arrays - Example

Suppose we are testing different lakes for the presence or absence of
a variety of organisms, recorded as a zero/one variable. For each
lake, we test for 10 organisms, at each of 5 times. We need a data
set which has, for each lake, one observation for each organism
which was ever present in the lake, as well as the first time it was
observed, and the last time it was observed. Thus, a set of
observations for a single lake might look like this:

ID TIME O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

1 1 0 0 0 0 1 1 0 0 0 0

1 2 1 0 0 0 1 0 1 1 0 0

1 3 0 1 1 1 0 1 0 0 0 0

1 4 1 0 0 0 1 1 1 0 0 0

1 5 0 1 1 1 0 0 0 1 1 0

16

Multi-Dimensional Arrays - Example(cont’d)
We begin by declaring the necessary arrays, and initializing them
each time a new id is encountered:

data two;
set lakes;
by id;
array all{5,10} _temporary_;
array firsts{10} _temporary_;
array lasts{10} _temporary_;
array orgs{10} o1-o10;

if first.id then do;
do i=1 to 10;

firsts{i} = 0;
lasts{i} = 0;
do j=1 to 5;

all{j,i} = 0;
end;

end;
end;

17

Multi-Dimensional Arrays - Example(cont’d)
The body of the program is especially simple - we just copy the
data from the multiple observations into the doubly-dimensioned
array:
do i=1 to 10;

all{time,i} = orgs{i};
end;

Now we check to see which organisms were found for this
observation, by storing the first and last times that the organism
was seen.
if last.id then do;

do i=1 to 10;
do j=1 to 5;

if all{j,i} = 1 then do;
if firsts{i} = 0 then firsts{i} = j;
lasts{i} = j;
end;

end;
end;

18

Multi-Dimensional Arrays - Example(cont’d)
Finally we check the firsts array – each time an element is not
zero, it means that the organism was seen in this lake, so we output
an observation.

do i=1 to 10;
if firsts{i} ^= 0 then do;

org = i;
first = firsts{i};
last = lasts{i};
output;
end;

end;
end; * - this ends the last.id loop;

keep id org first last;

run;

19

