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Cumulants are useful in studying nonlinear phenomena and in developing (approximate)
statistical properties of quantities computed from random process data. Wavelet analysis
is a powerful tool for the approximation and estimation of curves and surfaces. This
work considers both wavelets and cumulants, developing some sampling properties of
linear wavelet fits to a signal in the presence of additive stationary noise via the calculus
of cumulants. Of some concern is the construction of approximate confidence bounds
around a fit. Some extensions to spatial processes, irregularly observed processes and
long memory processes are indicated.
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1. INTRODUCTION

Wavelets are a contemporary tool for function approximation and mean level estimation.
They are competitors/collaborators with traditional Fourier analysis, with other orthogo-
nal function expansions, with linear and nonlinear regression estimates and with kernel
estimates. In particular they are useful for handling localized behavior, discontinuities,
and scale and shift transformations. In the time series case they have the ability to pick
up transient behavior. In particular Donoho [18] records,
Mallat’s Heuristic: "Bases of smooth wavelets are the best bases for representing objects
composed of singularities, when there may be an arbitrary number of singularities, which
may be located in all possible spatial positions."

For example the case with piecewise continuous mean level of a time series falls
into this domain. This present work was motivated in part by examples in Brillinger [10]
concerning the possible existence of jump discontinuities in the mean level function of a
time series.

Wavelet estimates may be linear in the data available, however a breakthrough
occurred when the concept of shrinkage was introduced, a breakthrough in the sense that
asymptotically efficient estimates are realized, see Donoho et al. [22]. In this procedure
the estimated coefficients of the expansion are moved closer to 0. Shrinkage estimates
are discussed in Section 8, but not investigated in any detail in this present paper.

The focus of the paper is the case where an additive error is stationary and mixing.
The work begins with some mention of existing procedures for estimating mean level
functions of time series, then presents some pertinent properties of cumulants. The use-
fulness of the cumulants lies in their ability to elicit basic statistical properties of esti-
mates quite directly. Linear wavelet estimates are indicated and illustrated in practice
hhhhhhhhhhhhhhh
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with some microtubule movement data. Large sample distributions are developed for the
linear case. The large sample distribution presented allows the construction of approxi-
mate confidence intervals for example.

Intentions of this paper are to illustrate that pertinent time series results are avail-
able to study wavelet estimates and that there are direct extensions to irregularly
observed processes, spatial processes, long memory processes and to both continuous and
discrete time. It may be remarked that the proofs required are analagous to large sample
results for tapered Fourier transforms of stationary processes, see eg. Brillinger [8].

The focus of the work is on the simplest form of wavelet analysis, namely orthonor-
mal expansions based on a single function in the case of the line. Here there are func-
tions φ(.), ψ(.) such that the functions

2l φ(2l x − k ), 2j ψ(2 j x − k )

provide a complete orthonormal basis for L 2(R ). The function φ(.) is called the scaling
function and ψ(.) the mother function. There are other wavelet analyses based on
biorthogonal functions, based on discrete domains and based on functions constructed to
handle finite regions, discontinuities and boundaries.

The substantive example presented is based on Haar wavelets and has in mind the
detection of step discontinuities. Haar wavelet expansions have the advantage of not
being subject to the Gibbs phenomenon at jump discontinuities, see Kelly [30].

1.1 Estimating Mean Level Functions
Consider the model

Y (t ) = S (t ) + E(t ) (1.1)

t = 0, ±1, ±2, . . . with S (.) a deterministic signal and E(.) a zero mean stationary noise.
Hence E {Y (t )} = S (t ) is the mean level of the series Y (.) at time t and the problem is to
estimate this. Quite a variety of different procedures have been proposed for estimating
S (t ) given data Y (t ), t = 0, ..., T −1. These methods can be linear or nonlinear and
parametric or nonparametric. One might have a finite parameter linear model, such as

E { Y (t )} = S (t | α) = α1g 1(t ) + . . . + αJ gJ (t ) (1.2)

with J known and the g 1(.), ..., gJ (.) given functions. In a nonlinear regression formula-
tion one would write S (t ) = S (t | θ) with θ a finite dimensional parameter to be
estimated. In the case that the mean function S (t ) is smooth, writing

S (t ) = h (t /T )

suggests that as an alternative one can consider the estimation of h (x ) by a kernel
smoother such as

ĥ (x ) =
t
Σ Y (t ) wU (x − T

thh) /
t
Σ wU (x − T

thh) (1.3)

with wU (.) a kernel function and U a binwidth parameter. H"ardle and Tuan [27] present
results including robust procedures. The problem of estimating U is considered in Chiu
[11], Hart [28-29], Altman [0]. An optimal U is determined in Truong [45].

As will be seen, wavelets provide another technique for the estimation of mean
level functions such as h (.). Their use has been illustrated in Antoniadis [1], Antoniadis
et al. [2], Brillinger [10], Donoho [17].
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2. CUMULANTS

The multilinear and dependence description properties of cumulants allow analytic
derivation of various characteristics of empirical wavelets, particularly sample distribu-
tions. Some pertinent properties are now reviewed.

Given an r vector-valued random variable (Y 1, . . . ,Yr ) the multilinear property is
described by

cum {a 1Y 1, . . . , ar Yr } = a 1
. . . ar cum {Y 1, . . . , Yr } (2.1)

cum {Y 1 + Z 1, . . . , Yr } = cum {Y 1,Y 2, . . . , Yr } + cum {Z 1,Y 2, . . . , Yr }

(2.2)

with (Z 1, Y 1, . . . , Yr ) an r +1 variate and cum symmetric in its arguments.
The dependence description property is based on the result that if any subset of the

Y ’s is independent of those remaining, then

cum {Y 1, . . . , Yr } = 0 (2.3)

This property is useful for formalizing mixing conditions in process cases.
In considering these results it is to be remembered that some of the variates may be

identical, eg. var {Y } = cov {Y , Y }. Cumulants have the further property of measuring
degree of nonnormality since the normal cumulants of order greater than 2 vanish.
Further there are rules for developing joint cumulants of polynomial functions of basic
variates. The above properties are discussed in Brillinger [8].

Cumulants provide easy proofs of asymptotic normality. For example, suppose that
Y 1, Y 2, . . . are independent and identically distributed with E {Y } = 0 and var {Y } = 1.
Suppose all moments of Y exist. Consider

Sn = (Y 1 + . . . + Yn )/√ddn

then following (2.1) and (2.2)

cumk {Sn } = n cumk {Y } / n k /2

which tends to 0 for k > 2 as n tends to infinity. The normal is determined by its
moments, in consequence Sn has a limiting normal distribution. There are improved
approximations, Edgeworth expansions, based on higher-order cumulants, see
Barndorff-Nielsen and Cox [3].

Error bounds may be given for the degree of approximation of the distribution of a
random variable by a normal, through bounds on the cumulants. For example Rudzkis et
al. [41] develop the following result. Consider a variate Y with mean 0 and variance 1.
Suppose that

|cumk {Y } | ≤
∆k −2

H (k !)1+νhhhhhhhh

for some ν ≥ 0, H ≥ 1, then in the interval 0 ≤ u ≤ δ/H

u
sup |Prob {Y < u } − Φ(u ) | ≤ 18H /δ

where

δ = 7
1hh

I
J
L 6

√dd2∆hhhh
M
J
O

1/(1+2ν)
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Statulevicius [42] provides the large deviation result that if

|cumk {Y } | ≤ (k −1)!H / ∆k −2

then

Prob { |Y | ≥ u } ≤ 2exp{ − u 2∆ / 2(H ∆ + u )}

Such results are useful in deriving the type of results presented in this paper. A particular
thing to note is that the results are expressed via conditions on cumulants.

Cumulants, specifically factorial cumulants, are also useful in studying integer-
valued random variables and developing Poisson approximations, see Brillinger [9], Sta-
tulevicius and Aleskeviciene [43].

3. WAVELETS
3.1 Introduction
Wavelet analyses correspond to particular types of series expansions. In one simple con-
struction, with x ε R , there is a single scaling function φ(.) and a mother wavelet ψ(.)
given by

ψ(x ) =
k =0
Σ

2N −1
(−1)k c −k +1φ(2x −k ) (3.1)

for some particular coefficients ck . The integer N relates to the chosen regularity of the
wavelets. If φ(.) has support [0,2N −1], then that of ψ(.) is [1−N ,N ]. This is the con-
struction of Daubechies [13]. Pertinent coefficients, ck , are listed in Daubechies [14].
The functions

φlk (x ) = 2l /2φ(2l x −k ) (3.2)

ψjk (x ) = 2j /2ψ(2 j x −k ) (3.3)

are such that

{ φlk (x ) and ψjk (x ), j = l ,l +1, . . . k = 0, ±1, ±2, . . . }

provide an orthonormal basis for L 2(R ) for any integer l . A square-integrable function
h (x ) can thus be written as

h (x ) =
k =−∞
Σ
∞

αlk φlk (x ) +
j =l
Σ
∞

k =−∞
Σ
∞

βjk ψjk (x ) (3.4)

for almost all x with

αlk = ∫φlk (x )h (x )dx (3.5)

βjk = ∫ψjk (x )h (x )dx (3.6)

and

k =−∞
Σ
∞

αlk
2 +

j =l
Σ
∞

k =−∞
Σ
∞

βjk
2 < ∞ (3.7)

In the case that φ(.) has compact support, many of the coefficients in (3.4) will be 0.
Expression (3.4) is referred to as a scaling expansion. The pair (3.5), (3.6) are called a
wavelet transform of h (.). The presence of the 2j factor in (3.2), (3.3) is what leads to
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the variable scale character and k is what leads to the translation character, that wavelet
approximations are noted for. When φ(.) and ψ(.) have compact or near compact sup-
port, the effects of the individual φlk (.), ψjk (.) terms in (3.3) are localized in x and this is
one of the advantages of the wavelet approach. One would pick a scaling function φ(.)
having in mind a desire that the high order coefficients in the expansion (3.4) are small.

One notes that the family φlk
U(x ) = √ddU φlk (Ux ), ψjk

U(x ) = √ddU ψjk (Ux ) is also ortho-
normal and complete. These will be used later in the paper. A parameter like U was
introduced by Hall and Patil [24] to facilate the study of large sample properties of
wavelet estimates. General references to wavelet analysis are Daubechies [14], Walter
[47-49], Meyer [36], Strichartz [44], Benedetto and Frazier [4].

One particular example, and the one employed in the computations of Section 4, is
the Haar case where

φ(x ) = 1 0 ≤ x < 1

0 otherwise

and

ψ(x ) = 1 0 ≤ x < 1/2

−1 1/2 ≤ x < 1

0 otherwise (3.8)

Here N of (3.1) is 1. In this case the expansion (3.4) can be anticipated to be particularly
appropriate when h (.) is piecewise constant, as when E {Y (t )} is constant at one level for
a while and later constant at other levels.

In practice, equivalent expansions like the following, with J a large integer ≥ l +1
and l ≤ J −1 are employed.

hJ (x ) =
k
Σ αJk φJk (x )

=
j =−∞
Σ

J −1

k
Σ βjk ψjk (x )

=
k
Σ αlk φlk (x ) +

j =l
Σ

J −1

k
Σ βjk ψjk (x )

These expansions contain a finite number of items, at each x , in the case that φ(.) has
compact support.

One may deal with convergences other than that of L 2. In what follows, concern
will be with the pointwise case. One reference concerning the mathematics of pointwise
convergence of wavelet expansions, like those above, as J → ∞ is Kelly et al. [31].

The discusion so far has referred to the cases of R . On occasion a restricted
domain, such as [0,1], will be of principal interest. The Haar wavelets actually provide
an orthonormal basis for L 2[0,1], but are special in that sense. The ψjk generated by
other φ are not generally orthonormal for [0,1]. Researchers have constructed wavelet
like orthonormal bases for L 2[0,1], but additional functions have to be introduced and
one needs to orthogonalize eg. by Gram-Schmidt, and so loses the simple form, see Dau-
bechies [15], Cohen et al. [12]. The difficulty is with the boundaries. The work of this
paper will persist with the functions of the form (3.2), (3.3) in order to better understand
this particular situation.

Given data Y (t ), t = 0, . . . , T −1 and T = 2p there are fast discrete wavelet
transforms taking the form

y ( j ,k ) =
t =0
Σ

T −1
w ( j ,k )t Y (t ) (3.9)
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with

w ( j ,k )t ∼∼ ψjk ( T
thh)

for k = 0,...,2j −1, j = 0,...,p −1, see Donoho et al. [22] .
In practice the spatial case is of great importance, eg. in image processing. Suppose

x ε R p . Now several scaling functions are involved. Wavelet theory indicates the
existence of I functions ψ(i )(x), i = 1, ..., I such that

ψj k
(i )(x) = 2jp /2ψ(i )(2 j x − k)

for j ε Z , k ε Z p , i = 1, . . . , I provide an orthonormal basis for L 2(R p ). The existence
of such functions is discussed in eg. Meyer [36], Daubechies [14], Benedetto and Frazier
[4]. Square integrable h (x) is now written as

h (x) =
i =1
Σ
I

j =−∞
Σ
∞

k
Σ βj k

(i )ψj k
(i )(x) (3.10)

for x ε R p with

βj k
(i ) = ∫ψj k

(i )(x)h (x)d x

Expression (3.10) is a so-called homogeneous expansion in contrast to the scaling expan-
sion of (3.4). One means to construct such a basis is via the tensor product method. For
example when p = 2, then I = 3 and one sets

ψj k
(1)(x) = 2j φ(2 j x 1−k 1)ψ(2 j x 2−k 2)

ψj k
(2)(x) = 2j ψ(2 j x 1−k 1)φ(2 j x 2−k 2)

ψj k
(3)(x) = 2j ψ(2 j x 1−k 1)ψ(2 j x 2−k 2)

with φ(.) and ψ(.) scaling and wavelet functions on R . The two dimensional Haar system
involves functions constant on rectangles.

3.2 A Statistical Setup
Consider the model

Y (t ) = S (t ) + E(t ) (3.11)

t = 0, ±1, ±2, . . . with S (.) deterministic and E(.) zero mean stationary noise. Suppose
that the data Y (t ), t = 0, ±1, . . . , ±T are available, with T large. Suppose further

S (t ) = h (t /T ) (3.12)

for some measurable bounded h (.) on [−1,1].
Suppose that h (.) is expanded using the complete orthonormal family

{φlk
U(x ) = √ddU φlk (Ux ), ψjk

U(x ) = √ddU ψjk (Ux ), l =l +1,..., k =0,±1,+−2,...}. Then

h (x ) =
k
Σ αlk

Uφlk
U(x ) +

j =l
Σ
∞

k
Σ βjk

Uψjk
U(x )

almost everywhere with

αlk
U = ∫φlk

U(x )h (x )dx (3.13)
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βjk
U = ∫ψjk

U(x )h (x )dx (3.14)

If U = 2n , then αlk
U = αl +n ,k , φlk

U(x ) = φl +n ,k (x ) with similar shifts for β and ψ. This
identification is useful in simplifying some developments.

Expressions (3.13), (3.14) suggest computing the statistics

α̂lk
U = T

1hh
t =−T
Σ
T

φlk
U( T

thh)Y (t ) (3.15)

β̂jk
U = T

1hh
t =−T
Σ
T

ψjk
U( T

thh)Y (t ) (3.16)

and as an estimate of h (x )

ĥ (x ) =
k
Σ α̂lk

U φlk
U(x ) +

j =l
Σ

J −1

k
Σ β̂jk

U ψjk
U(x ) (3.17)

for some J . The estimate (3.17) may also be written

k
Σ α̂Jk

U φJk
U (x ) or

j =−∞
Σ

J −1

k
Σ β̂jk

U ψjk
U(x ) (3.18)

In the case U = 2n , these become

k
Σ α̂J +n φJ +n (x ) and

j =−∞
Σ

J +n −1

k
Σ β̂jk ψjk (x )

respectively. For a given x , the number of terms involved in these various expressions is
finite, so there are not difficulties with convergence.

Expressions (3.15) and (3.16) constitute an empirical wavelet transform. Supposing
that U = 2n and that the observation domain is t = 0,...,T −1 then (3.16) has the approxi-
mate form of (3.9), with the coefficients displaced by n . The transform can therefore be
(approximately) computed using available discrete wavelet algorithms.

For Haar wavelets the function (3.7) will be piecewise constant, specifically the
estimate ĥ (x ) is the mean of T /2J U of the Y (t ) values around the time point
T ([2J Ux ]+.5)/2J U , with [.] here indicating integral part.

3.3 Properties of the Statistics
The statistics (3.15), (3.16), (3.17) are linear in the Y ’s, hence certain sampling proper-
ties, eg. large sample variances, cumulants and distributions are directly available. Some
assumptions and consequent results follow.
ASSUMPTION 1. The function h (.) is bounded and of bounded variation on [−1,1] and
vanishes outside that interval.

The assumption of bounded variation leads to error bounds when certain sums are
approximated by integrals.
ASSUMPTION 2. The scaling function φ(.) is bounded and of bounded variation on
[0,2N −1] with N an integer and satisfies (3.1). For given l the collection
{φlk (.), ψjk (.), j = l ,l +1,..., k = 0, ±1, ±2, . . . } of (3.1)-(3.3) provides a complete ortho-
normal basis for L 2(R ).
ASSUMPTION 2’. Assumption 1 holds and the coefficients of the expansion (3.4) satisfy

j =1
Σ
∞ I

J
L k
Σ βjk

2
M
J
O
| log( j +1) |2λ( j )2 < ∞ (3.19)

for some λ( j ) positive and increasing to ∞ with j .
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This last assumption concerns h (.) and is a strengthening of (3.7). Its role is bound-
ing the bias of the estimate of h (x ) that will be constructed. In the case that ψ(.) has
compact support, the inner sum in (3.19) is over ≤ A 2j terms for some A .

Concerning the time series Y (t ), suppose the cumulant functions of the stationary
error series E(.) exist and are denoted

cm (u 1, . . . , um −1) = cum {E(t +u 1), . . . , E(t +um −1),E(t )}

for m = 1, 2, . . . and t ,u = 0, ±1, ±2, . . . . In the case m = 2, write c EE(u ) for c 2(u ).
The power spectrum at frequency λ is

f EE(λ) = 2π
1hhh

u
Σ e −i λu c EE(u )

and will be needed below. Needed as well is
ASSUMPTION 3. The cumulant functions of the zero mean stationary series
E(t ), t = 0, ±1, ±2, . . . satisfy

Km =
u 1, . . . , um −1

Σ |cm (u 1, . . . ,um −1) | < ∞ (3.20)

for m = 2, 3, . . . . Also

u
Σ |u | |c EE(u ) | < ∞ (3.21)

and f EE(0) ≠ 0.

Here (3.20) is Assumption 2.6.1 in Brillinger [8]. It is a form of mixing condition
and leads to the consistency and asymptotic normality of the estimates to be studied.
THEOREM I. Suppose the model (3.11) holds with S (t ) = h (t /T ). As T → ∞, under
Assumptions 1, 2, 3
i)

E {(α̂lk
U − αlk

U)} = O (2l /2U 1/2T −1) (3.22)

E {(β̂jk
U − βjk

U)} = O (2 j /2U 1/2T −1) (3.23)

where the errors terms are uniform in j , k , l , U , T . Also
ii)

cov {α̂lk
U, α̂lk′

U } = 2πf EE(0)T −1

−U
∫
U

φlk (u )φlk′ (u )du + O (2l UT −2)

(3.24)

cov {α̂lk
U, β̂j′k′

U } = 2πf EE(0)T −1

−U
∫
U

φlk (u )ψj′k′ (u )du + O (2(l +j′ )/2UT −2)

(3.25)

cov {β̂jk
U, β̂j′k′

U } = 2πf EE(0)T −1

−U
∫
U

ψjk (u )ψj′k′ (u )du + O (2( j +j′ )/2UT −2)

(3.26)
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The errors terms are uniform in j , j′ , k , k′ , l , U , T . Next
iii)

|cum {β̂j 1k 1
U ,...,β̂jm km

U } | ≤ A m Km 2( j 1+ . . . +jm )(1/2 − 1/m )U m /2−1T −m +1 (3.27)

for some finite A , with similar expressions for the cumulants involving the α̂U . Finally
iv) If U /T → 0, U ≥ ε0 as T → ∞, then finite collections of the α̂U , β̂U are asymptoti-
cally normal with the indicated first and second order moments.

Since f EE(0) ≠ 0, the variances are actually of order T −1 for U > 0. If U → ∞ with
T , then the integrals in (3.24) - (3.26) vanish in the limit for distinct subscripts and the
corresponding statistics are asymptotically independent. If the E(t ) are independent with
variance σEE then 2πf EE(0) is replaced by σEE in the above expressions.

The proof of the theorem is given in the Appendix. It proceeds by evaluating the
joint cumulants of the α̂U and β̂U and seeing that sup U under the indicated assumptions,
(3.22)-(3.27) are satisfied. The result might have been anticipated by Theorem 4.4.2 of
Brillinger [8] with the φlk

U(.) and ψjk
U(.) in the role of the tapering functions of that

theorem.
Expression (3.26) will later suggest an estimate of the power spectrum value

f EE(0).
Below it will be seen that

var {ĥ (x )} ∼∼ T
2πf EE(0)hhhhhhhhhτ(x )

with

τ(x ) =
k
Σ φJk

U (x )2 = 2J U
k
Σ φ(2J Ux − k )2

Because φ(.) has finite support, τ(x ) ≤ A 2J U for some A , but its nearness to 0 for large
2J U is not immediately clear.
THEOREM II. Under the assumptions of Theorem I, for almost all x , y in [−1,1]
i)

E {ĥ (x )} =
k
Σ αJk

U φJk
U (x ) + O (2J UT −1) (3.28)

ii) If U → ∞ as T → ∞, then

cov {ĥ (x ), ĥ (y )} ∼∼

T
2πf EE(0)hhhhhhhhh

k
Σ φJk

U (x )φJk
U (y )

(3.29)

iii) The joint cumulants of order m are O (2(m −1)J U m −1T −m +1) as T → ∞ and
iv) If T /τ(x 1), ..., T /τ(xN ) → ∞, as T → ∞ then ĥ (x 1), . . . , ĥ (xN ) are asymptotically
jointly normal with the indicated first and second order moments, for N a finite integer.

In the Haar case the asymptotic normality is not surprising, since the estimate is the
mean of T /U 2J contiguous values and T /U 2J → ∞. The proof of the Theorem is given
in the Appendix. It follows by evaluating the cumulants of ĥ (x ), making use of Theorem
I.

To study the bias in more detail consider the expression
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j =−∞
Σ

J −1

k
Σ βjk

U ψjk
U(x ) (3.30)

which is another way of writing the first term on the right hand side of (3.28). Supposing
U = 2n this expression becomes

j =−∞
Σ

J −1

k
Σ βj +n ,k ψj +n ,k (x ) =

j =−∞
Σ

J +n −1

k
Σ βjk ψjk (x ) (3.31)

From Theorem 1’ of Móricz [37], concerning the degree of approximation of a function
by the partial sums of an orthogonal expansion, one has under Assumption 2’ that, for
almost all x , (3.31) is h (x ) + o (1/λ(J +n −1)) as n → ∞. No smoothness assumptions
have been made re φ, ψ in that development. Under other assumptions on φ(.) and h (.)
other expressions may be obtained for the degree of approximation of a partial wavelet
expansion, see Antoniadis [1], Antoniadis et al. [2], Kon and Rafael [33].
COROLLARY. Under the assumptions of the Theorem and Assumption 2’, and if
U = 2n , then ĥ (x ) is asymptotically unbiased and consistent at almost all x in [−1,1],
provided λ(J +n −1) → ∞, 2J 2n T −1 → 0 as T → ∞.

It may be noted that the asymptotic distribution of √ddddddT /2J U ĥ (x ) can be centered at
h (x ), provided 2J UT −1,2−J /2U −1/2T 1/2λ(J +n −1)−1 → 0 as T → ∞.

To construct a confidence interval for h (x ), one will need an estimate of f EE(0).
Noting (3.23), (3.26), an estimate could be based on the β̂jk

U for which it is felt that the
corresponding βjk = 0. Supposing this to be the case for j = J , a simple estimate is

f̂ EE(0) = 2π
Thhh

k
Σ (β̂Jk

U )2 / K (3.32)

provided U is large, where K is the number of k ’s summed over. The estimate is con-
sistent when K → ∞, appropriately with T . Specifically one has
THEOREM III. Under the conditions of Theorem I and if K , T /K , U → ∞ as T → ∞,
then f̂ EE(0) tends to f EE(0) in probability.

The proof is given in the Appendix. An estimate of var { ĥ (x )} is now given by

T
2πf̂ EE(0)hhhhhhhhh

k
Σ φJk

U (x )2

following (3.29) and one has
COROLLARY. Under the conditions of the Theorem the variate
(ĥ (x ) − E {ĥ (x )})/(2πf̂ EE(0)

k
Σ φJk (x )2/T )1/2 tends in distribution to the standard normal.

There are similar results for finite collections of such variates.
Antoniadis [2], Antoniadis et al. [1] consider the linear case of a Gasser-M"uller type

estimator and the E(t ) independent and identically distributed. They develop bias, con-
sistency and asymptotic normality results.

In some circulstances one can employ cumulant techniques to construct simultane-
ous confidence bounds. This could proceed for example by showing that the distribution
of the number of crossings of a high level is asymptotically Poisson.

4. A SUBSTANTIVE EXAMPLE
As an illustration of wavelet analysis, consider searching for jumps in records of microtu-
bule movement. Microtubules are linear polymers basic to cell motility. A concern is
whether their movement is smooth, or rather via a series of jumps. See Malik et al. [35]
for a discussion of the experiments involved.

Suppose Y (t ) denotes the distance a microtubule has travelled at time t . A model to
consider is
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Y (t ) = γ + δt + h (t /T ) + E(t ) (4.1)

with δ a parameter related to diffusion motion and h (.) a step function corresponding to
jumps. Re the parameter J involved in the analysis, it will be had in mind that there are
but a moderate number of jumps.

The Figure presents a Haar wavelet plus linear trend fit to the data on the location of
a microtubule as a function of time in one experiment. The top panel graphs the data
itself. The y -units in the panels are nanometers and the x-units in milleseconds. The
middle panel provides a linear trend plus Haar wavelet fit. The bottom panel provides a
corresponding shrunken wavelet fit bringing in the next level of detail. (The steps of
such a fit are described in Section 8.) The dashed lines provide approximate ±2 standard
error limits about the fits. There is minimal evidence for jumps in this particular trajec-
tory and not much difference between the linear and shrunken estimates. The length of
the series here was 1024, l = 3 and J = 4.

The calculations here were done by two stage regression: a) fit wavelets to the data,
b) fit wavelets to t , c) fit the result of b) to the result of a).

The results of similar computations, but for stream flow data, are provided in Bril-
linger [10].

5. IRREGULARLY OBSERVED PROCESSES
Suppose

Y (t ) = S (t ) + E(t )

for t ε R , but that the values are observed at time points τn of a stationary stochastic
point process. Denote the data by Y (τn ), −T ≤ τn < T . Define

N (t ) = # {τn in (−1,t ]}

and let the rate of the process N (.) be given by E {dN (t )} = pN dt .
Suppose S (t ) = h (t /T ), with support [−1,1] as before and for some l consider the

wavelet expansion,

h (x ) =
k =−∞
Σ
∞

αlk
Uφlk

U(x ) +
j =l
Σ
∞

k =−∞
Σ
∞

βjk
Uψjk

U(x )

As estimates of the coefficients take

α̂lk
U = N (T )

1hhhhhh
n
Σ φlk

U(τn /T ) Y (τn )

and

β̂jk
U = N (T )

1hhhhhh
n
Σ ψjk

U(τn /T ) Y (τn )

To study these estimates consider the bivariate process X(.) defined by

d X(t ) = [dN (t ), E(t )dN (t )] (5.1)

Suppose that X has stationary increments and cumulant measures defined for
an = 1, 2, n = 1,...,m m = 2, 3, .. by

cum {dXa 1
(t +u 1), . . . , dXam −1

(t +um −1), dXam
(t )} = dCa 1, . . . , am

(u 1, . . . , um −1)dt

with Ca 1, . . . , am
(u 1, . . . , um −1) of bounded variation in finite intervals. Such an assump-

tion is employed in Brillinger [6]. The power spectral density matrix of X(.) at frequency
λ has entry
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f cd (λ) = 2π
1hhh∫e −i λu dCcd (u )

in row c and column d . In the case that E(.) and N (.) above are stationary and indepen-
dent, the matrix is diagonal with entries f 11(λ) = f NN (λ) and

f 22(λ) = pN
2 f EE(λ) + ∫f EE(λ−γ) f NN (γ)d γ

where f EE(λ) is the power spectrum of E(.) and f NN (.) that of N (.).
Paralleling Assumption 3, it will be required that

ASSUMPTION 3’. The process X(.) of (5.1) has stationary increments and

∫ |dCa 1, . . . , am
(u 1, . . . , um −1) | = Km < ∞

for a 1, . . . ,am = 1,2. Also

∫ |u | |dCcd (u ) | < ∞
for c ,d = 1,2.

Now N (T )β̂jk
U is given by

−T
∫
T

ψjk
U(t /T )h (t /T )dN (t ) +

−T
∫
T

ψjk
U(t /T )dX (t ) (5.2)

and its expected value is

pN T ∫ψjk
U(x )h (x )dx = pN T βjk

U

Its variance is approximately

2πTf NN (0)
−1
∫
1

ψjk
U(x )2h (x )2dx + 2πTf 22(0)

−1
∫
1

ψjk
U(x )2dx (5.3)

which may be estimated as at (3.32) following an assumption that βJk
U = 0.

The cumulants of order m are in absolute value are ≤ A m Km 2( j 1+...+jm )(1/2−1/m )T for some
finite A as before. The asymptotic normality of the α̂lk

U, β̂jk
U follows as Theorems 4.1 and

4.2 of Brillinger (1972) with the φlk
U(.), ψjk

U(.) again playing the role of tapers.
One defines the estimate ĥ (x ) by (3.12) once again. Because of the presence of h (.)

in the first term of (5.3) however the variance estimate is more complicated since the
terms with different jk are no longer asymptotically independent.

The τn could be assumed fixed as in Brillinger [7] and alternate results developed.

6. SPATIAL PROCESSES

Consider t ε R p , so a change has been made to a spatial and continuous domain for the
basic process. In the case of p = 2 one might be studying an image. Consider the model

Y (t) = S (t) + E(t)

for t ε R p and suppose one wishes to estimate h (x) where S (t) = h (t/T ) where h (.) has
support [−1,1]p and E(.) is stationary spatial noise. Suppose that h (.) has the homogene-
ous wavelet expansion (3.10).

The analogs of Assumptions 1 to 3 above are immediate.
Consider the statistic

β̂j k
U (i ) = T −p ∫ ψj k

U (i )(t/T )Y (t)d t
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with ψj k
U (i )(x ) = U p ψjk (U x). This statistic is linear in the data so one can evaluate

cumulants directly. As an estimate β̂j k
U (i ) is unbiased. Arguing as in Brillinger [5], (6.1)

has variance
I
J
L T
2πhhh

M
J
O

p
f EE(0)

−U
∫
U

. . .
−U
∫
U

ψj k
(i )(u)2d u

and the various β̂’s are asymptotically normal. If U → ∞, they will be asymptotically
independent. The asymptotic normality is Theorem 3.2 of Brillinger (1970) with ψj k

U (i )(.)
in the role of taper. One can follow (3.32) and consider

f̂ EE(0) =
I
J
L 2π

Thhh
M
J
O

p

i =1
Σ
I

k
Σ( β̂Jk

U (i ))2 / K

as an estimate of f EE(0) where K is the number of β̂J k
U (i ) involved.

A homogeneous linear wavelet estimate is provided by

ĥ (x) =
i =1
Σ
I

j =−∞
Σ

J −1

k
Σ β̂j k

U (i )ψj k
U (i )(x)

for some J . As a variance estimate for ĥ (x) one can consider
I
J
L T
2πhhh

M
J
O

p
f̂ EE(0)

i =1
Σ
I

j =−∞
Σ

J −1

k
Σ ψj k

U (i )(x)2

and use this to set approximate confidence intervals.
Once again these properties may be derived by arguments involving cumulants.

7. LONG MEMORY PROCESSES

The processes considered up to now have been mixing, for example it has been assumed
that

u
Σ |c EE(u ) | < ∞ (7.1)

In the cases of a long memory process this sum may be ∞. Consider for example a
discrete time circumstance where the moments of the process E(.) exist, but its power
spectrum has the form

f EE(λ) = |1 − e −i λ |2d f * (λ) (7.2)

where f * (λ) is strictly positive, continuous and has bounded variation, 0 < d < 1/2.
Then

c EE(u ) ∼∼ |u |2d −12f * (0) Γ(1−2d ) sin(πd )

as |u | → ∞, see K"unsch [34] and so (7.1) does not hold.
Under some regularity conditions including (7.2), Yajima [52] considers the large

sample distribution of statistics, like (3.15-16) with U = 1 and t = 0, . . . , T −1. He finds
they are asymptotically normal, but for example

var {β̂jk } ∼∼ 2T −1+2d f * (0)Γ(1−2d )sin(πd )
0
∫
1

0
∫
1

ψjk (x )ψjk (y ) |x −y |2d −1dxdy

His argument also gives

cov {β̂jk , β̂j′k′ } ∼∼ 2T −1+2d f * (0)Γ(1−2d )sin(πd )
0
∫
1

0
∫
1

ψjk (x )ψj′k′ (y ) |x −y |2d −1dxdy
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expressions which may be usefully compared with (3.26) with the difference that asymp-
totic independence can not be anticipated. As before, one could use these last to develop
estimates of f * (0) and var { ĥ (x )}.

Rosenblatt [40] also develops such large sample distributions in the long memory
case. Robinson [39] reviews the kernel estimation of mean level functions in the pres-
ence of long memory noise. Wang [51] considers efficiency results. Percival and Gut-
torp [38] employ the Haar transform to study the Hurst effect. Gao [23] considers the L 2
norm under a long memory assumption.

8. SHRINKAGE ESTIMATES

By shrinkage is here meant the replacement of the sample coefficients of a statistic by
related "smaller" values in an attempt to obtain greater stability at the expense of some
increased bias, particularly when it is felt that the actual coefficients are small. Shrink-
age is basic in statistical work with wavelets, Donoho and Johnstone [19], Kerk-
yacharian and Picard [32], Donoho [8] and Hall and Patil [24].

There are a variety of forms of shrinkage estimate. In a regression setup
coefficients β̂ are multiplied by factors between 0 and 1 depending on their individual
uncertainty. For example β̂ may be shrunk to

w (β̂/σ̂) β̂
where σ̂ is an estimate of the standard error, of β̂ and w (.) is a sigmoidal function such
that w (u ) ∼∼ 1 for large |u | and ∼∼ 0 for small |u | . Tukey [46], for example, proposes

w (u ) = (1 − 1/u 2)+ (8.1)

while Donoho and Johnstone [19] emphasize the cases of hard and soft limiters. It may
be noted that these multipliers generally weight to 0 all terms where | β̂ | is less than its
standard error, as is intuitively plausible.

In the wavelet case, one can consider the shrinkage estimator

ĥ (x ) =
k
Σ α̂lk

Uφlk
U(x ) +

j =l
Σ

J −1

k
Σ ŵjk

Uβ̂jk
Uψjk

U(x ) (8.2)

where ŵjk is a multiplier depending on β̂jk . This type of estimate has been proposed by
Donoho and Johnstone [19-21] and studied by them and by Hall and Patil [25] amongst
others. The estimate is nonlinear and such nonlinearity can be necessary to obtain
efficient estimates, see Donoho et al. [22].

In practice the multipliers could have the form

ŵjk = w (β̂jk /σ̂jk δ) (8.3)

for a sigmoidal function w (.) where σ̂jk is an estimate of the standard error of β̂jk where
the constants 1/δ and J tend to ∞ at a some rate. Through choice of J and δ one can
affect the location and spread characteristics of the estimate. The bias can be anticipated
to be less for large J and small δ, while the variance would be less for small J and large
δ. Some discussion of the situation is provided in Hall and Patil [25].

An estimate based on (8.1-8.2) was employed in the Figure of the example of Sec-
tion 4. The properties of the estimate will be developed in a second paper.

9. DISCUSSION
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The usefulness of the cumulants in this work is that they provide an algebraic-
analytic calculus allowing routine derivation of probability bounds and approximate dis-
tributions. Various of the results are pertinent to other series estimators.

Other approaches to picking up discontinuities via wavelet techniques are indicated
in: Donoho [16], Wang [50], and Hall et al. [26].
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APPENDIX

Throughout the proofs, A will denote a finite bound. Sometimes the properties of
the α̂U will not be developed, but in those cases the argument presented for the β̂U is
applicable.

The following lemma of Polya and Szeg"o [38a] will be needed.
LEMMA 1. If the function g has finite total variation, V , on [−1,1], then

|
−1
∫
1

g (x )dx − T −1

t =−T
Σ
T

g ( T
thh) | ≤ T

Vhh

for integer T > 0.
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PROOF OF THEOREM I.
Consider (3.23). One has

E {β̂jk
U} = T

1hh
t
Σ ψjk

U( T
thh)h ( T

thh)

and from Lemma 1

| T
1hhΣ ψjk

U( T
thh)h ( T

thh) − ∫ψjk
U(x )h (x )dx | ≤ variation {ψjk

U h }/T

and that variation is A 2j /2U 1/2. This gives (3.23). The result for α̂ jk
U follows similarly.

Consider next (3.26) in the case ( j ,k ) = ( j′ ,k′ ). One has

var {β̂jk
U} =

T 2
1hhh

t 1
Σ

t 2
Σ ψjk

U( T
t 1hhh)ψjk

U( T
t 2hhh)c EE(t 1 − t 2)

=
T 2
1hhh

u =−2T
Σ
2T

c EE(u )
t
Σ ψjk

U( T
t +uhhhh)ψjk

U( T
thh)

where the sum for t is from max (−T ,−T −u ) to min (T ,T −u ). Next, with u > 0, (the
negative u case follows similarly)

|
t
Σ ψjk

U( T
t +uhhhh)ψjk

U( T
thh) −

t
Σψjk

U( T
thh)2 |

≤ A 2j /2U 1/2

t
Σ[ | ψjk

U( T
t +uhhhh) − ψjk

U( T
t +u −1hhhhhhh) | + | ψjk

U( T
t +u −1hhhhhhh) − ψjk

U( T
t +u −2hhhhhhh) |

+ . . . + | ψjk
U( T

t +1hhhh) − ψjk
U( T

thh) | ]

≤ 2j /2U 1/2A |u | variation {ψjk
U} ≤ 2j UA |u |

Again from Lemma 1

| T
1hh

t
Σ ψjk

U( T
thh)2 − ∫ψjk

U(x )2dx | ≤ 2j UA /T

and the result (3.26) follows on remembering the definition

f EE(0) = 2π
1hhh

u =−∞
Σ
∞

c EE(u )

and the assumption (3.21). The covariance result follows similarly.
For part iii), writing a for a subscript pair jk

cum {β̂a 1
U, . . . ,β̂am

U } =

T m
1hhhh

u 1 = −2T
Σ
2T . . .

um −1=−2T
Σ
2T

cm −1(u 1, . . . ,um −1)
t
Σ ψa 1

U( T
t +u 1hhhhh) . . . ψam −1

U ( T
t +um −1hhhhhhh)ψam

U ( T
thh)

Abreviating the notation, from H"older’s inequality

|
t
Σ ψa 1

U . . . ψam
U | ≤ (

t
Σ | ψa 1

|m )1/m . . . (
t
Σ | ψam

|m )1/m
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and

t
Σ | ψa

U( T
thh) |m ≤ 2jm /2A m 2−j U −1T |support ψ |

counting terms. Putting these together one has iii).
The asymptotic normality, part iv), follows from the fact that the cumulants of √ddT β̂

tend to those of the normal as T → ∞ and Lemma P4.5, page 403 in Brillinger (1975).
PROOF OF THEOREM II.

The proof will use the first representation (3.18) The number of k with nonzero
terms is bouned by 2N . Using (3.22) the expected value is

k
Σ E {α̂Jk

U }φJk
U (x ) =

k
Σ(αJk

U + O (2J /2U 1/2T −1))φJk
U (x ) =

k
Σ αJk

U φJk
U (x ) + O (2J UT −1)

as indicated.
For (3.29), one uses (3.24). Consider

k
Σ

k′
Σ cov {α̂Jk

U ,α̂Jk′
U }φJk

U (x )φJk′U (y )

∼∼ T
2πf EE(0)hhhhhhhhh

k
Σ φJk

U (x )φJk
U (y )

as desired for U sufficiently large.
Parts iii) and iv) follow likewise from the result iii) of Theorem I with a = (J ,k ).

One has

cumm {ĥ (x )} =
a 1
Σ . . .

am
Σ cum {α̂a 1

U, . . . ,α̂am
U }φa 1

U(x ) . . . φam
U (x )

= O ( T −m +1

a 1
Σ . . .

am
Σ 2( j 1+ . . . +jm )(1/2 − 1/m )2 j 1/2 . . . 2jm /2 )

= O ( T −m +1[
a
Σ 2j (1 − 1/m )]m )

The convergence of the standardized cumulants to those of the normal gives the
asymptotic normality.

PROOF OF THEOREM III.
From (3.26) and the fact that E {β̂} is 0

E {f̂ EE(0)} = T
2πhhh f EE(0) (

k
Σ

−U
∫
U

ψJk (u )2du )/K + O (2J U /T )

From (3.27) the variance of β̂U is O (T −1) uniformly and the fourth cumulants are
O (2J UT −3) uniformly. It follows that the covariances of the (β̂U )2’s are
O (T −2)+O (2J UT −1) and so var {f̂ EE(0)} is O (K 2T −2). Thus the estimate is mean square
consistent.

PROOF OF COROLLARY.
One uses the result that if as T → ∞, a sequence (YT − µT )/σT approaches the stan-

dard normal in distribution and if σ̂T /σT tends to 1 in probability, then (YT − µT )/σ̂T also
tends to the standard normal in distribution.
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Figure legend

The top panel provides one of the traces of movement of a microtubule. The second
panel provides a fit of the model (4.1) employing Haar wavelets and approximate 95%
confidence limits around the fitted line. The third panel provides the shrinkage estimate
(8.2) employing the Tukey multiplier (8.1).


