
An Investigation of the Second-and Higher-order Spectra of MusicDavid R. Brillinger and Rafael A. IrizarryStatistics Department University of California Berkeley, CA 94720AbstractFor a variety of musical pieces the following questions are addressed: Are the powerspectra of 1/f form? Are the processes Gaussian? Are the higher-order spectra of 1/fform? Are the processes linear? Is long-range dependence present? Both score andacoustical signal representations of music are discussed and considered. Parametricforms are �t to sample spectra. Approximate distributions of the quantities computedare basic to drawing inferences. In summary, 1/f seems to be a reasonable approxi-mation to the overall spectra of a number of pieces selected to be representative of abroad population. The checks for Gaussianity, really for bispectrum 0, in each case re-ject that hypothesis. The checks for linearity, really for constant bicoherence, rejectthat hypothesis in the case of the instantaneous power of the acoustical signal but notfor the zero crossings of the signal or the score representation.KEYWORDS: Bicoherence, Bispectrum, Linear Process, Music, Parametric Mod-els, Spectral Analysis1 IntroductionWhat is music? Probably nobody will ever give a �nal answer to this question, but some-thing inside of us tells us when a sound we hear is music and when it is not. Most peoplehear the sound of cars passing by on a road and don't think it is music, but it only takesthem a moment after a radio is turned on to identify the sound coming out as music. Cer-tain sounds we classify as music others we do not. In this paper we examine some statisti-cal properties of two di�erent numerical representations of music to see if we can shine somelight on the property that makes music, music.We are able to process music in a data analytic fashion because the time is at handwhen music can be treated directly as data to be analyzed by contemporary statistical pro-cedures and packages.The paper begins with a description of the two basic representations of music, moves onto some review of previous investigations, then presents the results of modeling the second-order spectra and �nally employs higher-order spectra to assess Gaussianity and linearity.The pieces investigated included: Baroque, Classical, Romantic, Atonal, Spanish Gui-tar, Jazz, Latin, Rock & Roll and Hip Hop. 1



D.R. Brillinger, R.A. Irizarry 22 Representations of MusicCertainly music is sound. Every sound we hear is the consequence of pressure uctuationstraveling through the air and hitting our ear drums. The signal representation takes thisproperty of sound to represent music as a continuous function.For years composers have transcribed the music they hear in their heads using whatis known as common practice notation (CPN). We use such \numerical" representations ofmusic for our analyses.2.1 Signal RepresentationThe function describing the audible pressure uctuations of air is called a \sound wave".The energy transmitted by this \sound wave" can be transformed into a voltage Y (t), whichwill be a continuous function in time. Compact Disks are proof of how e�ective quantizedsamples of this function are. This time series Y (t); 0 < t < T , will be called the signal rep-resentation of music. Throughout this paper we will be using a discrete version of the func-tion, Yt; t = 0; 1; :::When such uctuations of air are approximately periodic we hear a sound with a def-inite musical pitch. Instruments play di�erent pitches by changing the fundamental fre-quency of the \sound wave" they are creating, Pierce [15]. Some cultures, e.g. Western cul-tures, have quantized these pitches and created \notes". This has permitted composers towrite with a notation that an instrumentalist can then turn into sounds. This notation pro-vides the other representation of music, the score representation.2.2 Score RepresentationMost instruments known to us have the capability to play di�erent \notes". In all \melodic"instruments, for example violins, pianos, trumpets, sitars, etc., as mentioned above di�erentnotes correspond to di�erent fundamental frequencies or pitches. The pitch corresponding to440 Hz has been called A (concert pitch A). Any frequency that holds a 2n:1 relation with Ais also called A, but in another octave. Western music uses the 12 tone equal-tempered scalein which the frequencies between, say 440Hz (concert pitch A) and 880Hz (an octave aboveconcert pitch A) have been divided into 12 notes corresponding to frequencies with the sameratio between them. These 12 notes are A;A] (A sharp) ; B;C;C];D;D];E; F; F ];G;G]and that brings us back to A (an octave above). If you look at a piano the black keys cor-respond to the sharps and you will see a twelve white-black keys pattern repeating 7 times.Adjacent notes are said to be a half-step apart or a semi-tone away, see Pierce [15].The human audible range can hear about 4 octaves below concert pitch A and about6 octaves above (this is for the keenest of ears) . This means that there are about 100 notesthat we can hear. Western composers have found a universal way of representing these notes,namely, what is known as common practice notation (CPN). Probably most if not all sheetmusic you have seen uses this notation. With this notation a composer tells a performerwhat pitch his instrument should play. Representing notes as numbers is now straightfor-



D.R. Brillinger, R.A. Irizarry 3ward. The MIDI standard (see more detail below) assigns to concert pitch A the number 69and for every adjacent note adds or subtracts one.To transcribe a melody we also need the rhythm. CPN also provides symbols to de-note how long each note is going to be played and also for how long nothing will be played(rests). In Western music the time domain is divided into measures and beats and into sub-beats. For any given song one could �nd the smallest subdivision of the beat. We will callthis a tatum (as de�ned by Bilmes in his master's thesis [1]), such that any distance betweenany two notes can be represented as k tatums, k an integer. This is usually easy to do bylooking at the score. As an example consider a song that has 5 measures. Each measure isdivided into 3 beats. Say that a tatum is equivalent to a quarter of a beat. Then each beatis 4 tatums long, each measure is 4 � 3 tatums and the song is 3� 4 � 5 tatums long.Even with this representation we will not have a one-to-one correspondence withsounds. Each note can have millions of di�erent sounds (timbre): loudness, tremolo, stac-cato, varying with di�erent instruments, who's playing, (for some it is not hard to distin-guish the timbre of two di�erent players), etc.. The same occurs for the rhythm: decrescen-dos, accelerandos, rubato, swing, etc... Even though a one-to-one correspondence does notexist we can make a good approximation using the MIDI standard.2.2.1 The MIDI StandardThe MIDI (Musical Instrument Digital Interface) standard is a hardware speci�cation andcommunications protocol that allows computers, controllers, and synthesis gear to pass in-formation amongst themselves, see Loy [13]. MIDI uses representations based on the con-cept of notes by de�ning a pitch and a velocity (volume) that go on and o�. MIDI is mostlycontrolled by keyboard instruments which can be represented by a series of switches. Eachseparate key is treated as a switch. When a key is depressed, a Note On message is sent out,indicating the note associated with that key and with what velocity it was struck. Whenthe key is released, a Note O� message is transmitted with the key number and velocity 0.In a similar way MIDI can be used to go from a score representation of sound to an acous-tic signal. The way MIDI, together with sound synthesis techniques, converts scores to mu-sic is rather complicated. In the following section we present a method of converting a seriesof notes represented in a MIDI score to an acoustical signal representation of a sine tone in-strument (i.e. an instrument with no harmonics).2.2.2 Time Series RepresentationThe time series representation Xj , where j is the tatum number, is de�ned by Xj = note attatum j. This representation does not characterize the score exactly, since it makes no dis-tinction between two contiguous identical notes with durations d1 and d2 and that note withduration d1 + d2.As a numerical representation of a note we could use the MIDI-Note number. In thiscase an increase of a step would represent a jump to the note a semi-tone away. This presentsa problem when dealing with rests. Rests do not have Midi-Note numbers. We couldn't



D.R. Brillinger, R.A. Irizarry 4just assign 0 to rests because then this would be representing a note corresponding to MIDI-number 0. Even though this note is below the audible range it does not correspond to 0 fre-quency thus its choice is quite arbitrary since notes with MIDI-note numbers smaller than16 correspond to notes below the audible range and using equation (1) below we see thatthe MIDI-note number corresponding to 0 frequency is �1. One way to get around this isto prolong the duration of notes preceding rests. In a song with few rests of short durationthis would not make much of a di�erence.An alternative numerical representation, that is more in accordance with the signalrepresentation, is using the fundamental frequency of the pitch determined by the notes. Forexample a note of MIDI-number X would be represented by frequency440 � 2X�6912 = 8:175799 � 2X12 Hz. (1)see Pierce [15]. In this case frequencies related to rests could be set to 0 since a sound wavewith 0 frequency has no uctuations and thus is silent. It would be interesting to note howrobust our analysis is to this arbitrary assignment.2.2.3 Marked Point Process RepresentationSuppose we have a series of triplets, (Note,Duration,Volume), then we can construct anacoustical signal representation via the following de�nitions:Y (t) = Xj Vjh(t� �j�j ) cos �j(t� �j) (2)h(�) = a taper functionwhere �j is the time of commencement of the j-th note, �j is the frequency of the j-th note,Vj is the volume of the j-th note and �j is the duration of the j-th note. Here f�jg will bea point process corresponding to times of jumps between notes. For time t near �j the sig-nal will look like a cosine wave of frequency �j and amplitude Vj . The units t here could beseconds as well as tatums in which case we could represent changes in tempo by using timemaps that assign a duration in seconds to each tatum, see [21].To compute the frequency �j from midi-number Xj we use equation (1). (We usedthis conversion method to check for mistakes in the data entry. By converting the entereddata and forming the signal produced by relation (2) we then played the signal through thespeakers of a Sparc work-station using the Matlab command sound. See Appendix for somedetails.)One reason the taper function is introduced in (2) is to avoid hearing clicks at instan-taneous changes of pitch. It also expresses the restricted duration of a particular note.2.2.4 An ExampleThe following is the common practice notation (CPN) for the �rst two bars of Mozart'sSonata in C-major, K545:



D.R. Brillinger, R.A. Irizarry 5Piano�GG 4444 ! ! ! !! > ! ! ! !! ! 2 ! ! !! . !!����! ! ! ! !"Note: The actual song starts with a half note C and no rest. We put in the rest for illustrative purposes.The melody in these two bars is played by the right hand (shown in the upper clef). In thiscase the tatum would correspond to a sixteenth note, or a quarter of a beat. If the song wereplayed at an Allegro tempo (about 144 quarter notes per minute) then a tatum would havea duration of 60(seconds)=144(quarter notes per beat) � 1=4(tatums per beat) � 0:10 sec-onds. The note and duration in tatum pairs are the following: (C,4), (rest,4), (E,4), (G,4),(B,6), (C,1), (D,1), (C,8)The time series representation using MIDI-numbers would be :72; 72; 72; 72; NA, NA, NA, NA; 76; 76; 76; 76; 79; 79; 79; 79;71; 71; 71; 71; 71; 71; 72; 74; 72; 72; 72; 72; 72; 72; 72; 72Here the NAs represent rests.The time series representation using frequencies of the pitches would be:523; 523; 523; 523; 0; 0; 0; 0; 659; 659; 659; 659; 783; 783; 783; 783;493; 493; 493; 493; 493; 493; 523; 587; 523; 523; 523; 523; 523; 523; 523; 523A marked point process representation with time measured in tatums characterizes thescore. For the sonata we have f�j; (Vj ; �j; �j)g : f0,(1,523,4)g, f8,(1,659,4)g, f12,(1,783,4)g,f16,(1,493,6)g, f22,(1,523,1)g, f23,(1,587,1)g, f24,(1,523,8)g. (We have set the volume to 1,choice is completely arbitrary. This part of the score does not ask for certain notes to beplayed louder than others. In practice accents are always present.)3 Some Previous WorkElectronic Musicians have used random processes to create melodies. Completely uncor-related processes, with constant spectra, seem to create \melodies" with no structure.\Melodies" produced with random walks, i.e. spectrum 1=f2, seem to be too predictable. Inbetween these two processes is so called 1=f Noise.Voss studied the possibility of music having a 1=f spectrum [22, 23, 24]. He took thesignal representations Y (t) of a variety of songs and obtained the \instantaneous" audiopower of music. In order to measure it, the audio signal Y (t) was passed through a band-pass �lter in the range 100 Hz to 10 kHz. The output voltage was squared, and �ltered witha 20 Hz low-pass �lter. Voss remarked that correlations of the resulting process represented
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0.15Figure 1: Score, smoothed zero crossings and instantaneous audio power of Eine KleineNachtmusik.correlations of the audio power of successive notes. For a discussion of some properties ofthis �ltering technique see the Appendix.Another quantity Voss examined was the \instantaneous" frequency. He measured thisby the rate, Z(t), of zero crossings of the audio signal. He remarked that in the case of music,correlations of Z(t) represented correlations in the frequencies of successive notes. This isreasonable because if say frequency � dominates at time t, the signal will be approximately� cos(�t+�) and the rate of zero crossings (or cycles) is �=2� per unit time. Of course prob-lems may arise when more than one stream of notes is played at the same time, for examplein Mozart's Sonata above you have the right hand playing a stream of notes corresponding tothe melody and the left hand playing a stream of notes corresponding to the accompaniment.These two methods, of seeking information of the melody from the audio signal, workwell when the melody is being played by one instrument with no harmonics, as we see in



D.R. Brillinger, R.A. Irizarry 7Figure 1. In a case where the audio signal contains more than one instrument and the soundproduced by these instruments contains many harmonics, these methods do not work as well.In Figure 1 we see the 4 time series plots. The �rst is the score representation, using fre-quencies, of the �rst 10 measures of the melody line of Mozart's Eine Kleine Nachtmusik,the second is the smoothed zero crossings of the signal created using (2) on the score repre-sentation, the third is the smoothed zero crossing of the audio signal of an actual orchestraplaying the song and �nally the fourth plot is the \instantaneous" power of the audio sig-nal. Notice how well the zero crossings method works when the sound signal contains onlyone instrument with no harmonics. In the third plot we see that the method doesn't workwell when there is more than one instrument playing. Notice also that at the beginning ofthe song, when all the instruments are playing the same notes (�rst 4 measures), the methodworks better than when there is more than one stream present. (See the Appendix for theprocedure used to obtain these �gures).In another formal study of music Hsu and Hsu [9] study the fractal nature of the in-tervals between successive notes. This corresponds to the intervals in the score representa-tion using the MIDI-note numbers. If in (2) we used the MIDI-note numbers Mj instead ofthe frequencies �j, then these intervals would be de�ned by Ij =Mj+1�Mj for j = 1; :::; N ,where N is the number of notes in the whole piece.4 Second-order SpectraThe second-order spectrum or power spectrum of a stationary process Y (t), �1 < t < 1is given by covfY (t+ u); Y (t)g = Z 1�1 cos(�u)f2(�)d� (3)with u the lag. The physical meaning of the spectrum is that f2(�)d� represents the contri-bution to the variance or power of Y (t) components with frequencies in the ranges (�; �+d�)and (��;��+ d�).These de�nitions extend directly to the case of locally stationary process. Crudely the(overall) spectrum of the process (2) will be proportional toXj V 2j �j�(�� �j) (4)and the process will have 1=f spectrum to the extent that V 2j �j falls of as 1=�j . The pro-cess itself will be locally stationary with instantaneous frequency �j for t near �j .4.1 EstimatesIn the case that the stationary process Yt has mean 0 a naive estimate of the spectrum isprovided by the periodogram, IT2 (�) = 12�T jdT (�)j2 (5)



D.R. Brillinger, R.A. Irizarry 8where dT (�) = TXt=1 expf�i�tgYt (6)The periodogram is an asymptotically unbiased but inconsistent estimate (unless f2(�) = 0)since V ar[IT2 (�)] � f2(�)2 as T !1.If the series Yt is mixing (see e.g. conditions in Brillinger [4]), the variatesIT2 (�t)=f2(�t), �t = 2�t=T for t = 1; 2; : : : (7)are approximately independent exponentials with mean 1.4.2 Parametric ModelingVoss proposed that the spectrum of music has a 1=f (or 1=�) parametric form. Consider theproblem of �tting parametric models to spectra. We can �nd estimates by maximizing theapproximate log likelihoodLT (�) = � T�1Xt=1 "log(f2(�t; �)) + IT2 (�t)f2(�t; �)# , �t = 2�tT (8)see Dzhaparidze [6]. With � estimated by �̂ = arg max� LT (�), under certain conditions (in-cluding that the trispectrum is 0), �̂ is consistent and asymptotically normalpT (�̂T � �)! N(0;��1� ) (9)as T !1, where ��[k; l] = 14� Z ��� @@�k log f2(�; �) @@�l log f2(�; �)d� (10)The estimate is asymptotically e�cient in the Gaussian case.The goodness of �t of a particular parametric model may be assessed by graphing theestimate, IT2 (�), as well as the parametric estimate f2(�; �̂) surrounded by con�dence boundsfor the former. This will be done in the examples that follow.4.2.1 Models for SpectraWe consider the following models for the overall power spectrum of music:1. f2(�;�; �) = ���2. f2(�;�; �) = �1+��3. f2(�; a; b; c; �) = �a(1+��b)c



D.R. Brillinger, R.A. Irizarry 94. f2(�; a; b; ::; �; �; ::) = �a(1+��b)c 1(1+��d)eBy choice of functional form and parameter values, these models are able to describe a fairlybroad range of behavior.In all the models 0 � � � � with f2 symmetric and of period 2�. Notice that the �rstmodel is the \1/f" Noise model.4.3 Signal RepresentationSongs from a variety of musical styles were chosen in our study of the power spectrum of thesignal representation. These songs included:1. Baroque: J.S. Bach, Cantata No. 211 (Co�ee Cantata) BWV 211, Recitativo: Wenn Du mir nicht den Co�ee andCantata burlesque (Peasant Cantata) BWV 212, Aria: Heute noch, lieber Vater, tut es doch. Performed by baritoneKevin McMillan, soprano Dorothea R�oschmann and Le Violins du Roy chamber orchestra.2. Classical: J.F. Haydn, Sonata in D-mayor Hob. XVI/37, Finale and Sonata in F-mayor Hob. XVI/23, Finale . Bothperformed on Piano by Dominique Cornil.3. Romantic: C. Debussy, Suite bergamasque L. 75, Passepeid and Images L. 87, Lent. Both performed on Piano byZ�oltan Kocsis.4. Atonal: A. Schoenberg, Orchesterst�ucke op. 16, Vorgef�uhle and Orchesterst�ucke op. 16, Peripetie. Both performed byBerlin Philarmonic.5. Spanish Guitar: L. Mil�an, Pavan No. 6 and Pavan No. 5. Both performed on Guitar by Andr�es Segovia.6. Jazz: Wayne Shorter, Footprints and Miles Davis, Four. Footprints performed by Miles Davis. Four performed bySonny Rollins. In both cases we recorded just the head (In most Jazz tunes a song starts o� with a �xed melody, calledthe head, and then improvisations are played).7. Afro-Cuban: Juan Mesa, Amalia and Florencia Calle, Baba Cuello Mao. Both performed by Los Mu~nequitos deMatanza.8. Rock and Roll: Chuck Berry, Let it Rock and Chuck Berry, Bye Bye Johnny. Both performed by Chuck Berry.9. Hip-Hop/Rap: R. Stewart, E. Wilcox, R. Jackson, T. Hardson, R. Robinson and J. Mart��nez, It's Jiggaboo Time andIf I Were President. Both Performed by The Pharcyde.We sampled the audio signal of the mentioned songs at 8000 samples per second. Thesampled signal was then �ltered using the two methods of Voss described above. It is im-portant to note that the units of the signal Yt are arbitrary. (See the Appendix for the de-tails of these computations.) First we determined Yt to be the smoothed zero crossings ofthe signal. Then we calculated the periodogram of Yt and minimized the negative of theapproximate log likelihood given in equation (8) restricting � to (0; 20)Hz since frequenciesover 20Hz where �ltered out. Using Powell's algorithm, see [16], the four models were �t-ted. The results of these �ts in the case of Bach's Co�ee Cantata can be seen in Figure 2.The goodness of �t may be assessed by the approximate 95% con�dence intervals which aregiven as the dashed lines. Model 1 seems to �t well here. The same was done for the \in-stantaneous" audio power of the signals, the four models were �tted. The results of the �tsfor the Co�ee Cantata can be seen in Figure 3. Again Model 1 seems to �t well.We �tted the 1=f model for the smoothed zero crossings obtained from the signal rep-resentations of the 18 pieces listed above. A �t for each style can be seen in Figure 4. Ap-proximate standard errors are calculated using equation (10). The 1=f model appears to beperforming well.The values obtained for �̂ are given in Table 1. The fraction of points outside the (ap-proximate) 95% intervals ranges from 4.6% to 6.3%.
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Number of points graphed : 1310Figure 3: Fitted models for the \instantaneous" power obtained for Bach's Co�ee Cantatasignal4.4 Score representationWe next looked at the time series expressions of various songs representative of several stylesof music. In the following list we give the composer, title of composition, title of the spe-ci�c part (when applicable), the key, time signature and tempo given in the score, and whattype of note corresponds to a tatum.1. Baroque(a) J.S. Bach Cantata No 211 (Co�ee Cantata), Be Silent All, Recitativo : Wenn du mir nicht den Co�ee, D-major,4/4, Tempo = 70, Tatum = 1/16.(b) J.S. Bach, French Suites, Suite II, Courante, C-minor, 3/4, Tempo = 144, Tatum = 1/8.2. Classical(a) F.J. Haydn, La Roxelane : Air and Variations, Theme, C-minor, 2/4, Tempo= 150 (Allegretto) , Tatum = 1/16.(b) F.J. Haydn, La Roxelane : Air and Variations, Var I, C-major, 2/4, Tempo = 150 (Allegretto), Tatum = 1/16.(c) F.J. Haydn, La Roxelane : Air and Variations, Var II, C-minor, 2/4, Tempo = 150(Allegretto), Tatum = 1/16.3. Romantic(a) Claude Debussy, Suite Bergamasque, Passepeid, F-minor, 4/4, Tempo = 150 (Allegretto ma non troppo), Tatum= 1/8, (Note: this is an approximation to the melody. Triplets were ignored and replaced by the �rst note.)4. Spanish Guitar(a) Luis de Mil�an, Pavan no. 5, in Tone VIII, "La bella Francesca"(Fol. [G vir ]), G-minor, Complex meter variesbetween 2/4 3/4, Tempo = 120 (Allegro Moderato), Tatum = 1/16.(b) Luis de Mil�an, Pavan no. 6, in Tone VIII, (Fol. [G vir ]), G-minor, Complex meter varies between 2/4 3/4,Tempo = 120 (Allegro Moderato), Tatum = 1/8.5. Jazz(a) Miles Davis, Four, E[-major, 4/4, Tempo = 178 (Medium Swing), Tatum = 1/8.(b) Wayne Shorter, Footprints, E[-major, 6/4, Tempo = 178 (Medium Swing), Tatum = 1/8.In both cases we use the score of the head.6. Latin(a) P�erez Prado, Mambo No. 5, E[-major, 2/2, tempo = 240, tatum=1/8.(b) P�erez Prado, Mambo No. 8, F-major,2/2, Tempo=240, tatum=1/8.
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eFigure 6: Fitted 1=f model for the scores of the 12 pieces listed.Song �̂ SE Tot. Pts. % not in c.i.Baroque 1 1.330 0.1180 143 6.3Baroque 2 0.904 0.1080 171 8.2Classical 1 1.510 0.1590 79 14Classical 2 1.620 0.1780 63 18Classical 3 1.590 0.1590 79 3.8Romantic 1.170 0.0571 613 7.8Spanish Guitar 1 1.630 0.1530 85 5.88Spanish Guitar 2 1.540 0.1710 68 5.88Jazz 1 0.726 0.1250 129 7.8Jazz 2 1.670 0.1680 71 8.4Mambo 1 0.970 0.0833 288 9.3Mambo 2 1.240 0.1080 171 9.4Table 2: Results of �tting the power spectrum.



D.R. Brillinger, R.A. Irizarry 155 Third-Order SpectraNonGaussian aspects of music do not appear to have been investigated. In this connectionthe bispectrum and bicoherence are pertinent parameters. They are useful in both discern-ing nonGaussianity and in examining for nonlinearity. De�nitions and estimates are givenin the Appendix.Suppose the process Yt is linear, that isYt = Z at�ud�u (13)where �t is a process with independent increments having mean 0, variance �2, and thirdmoment �. (In the Gaussian case � = 0.) Then the power spectrum of Yt isf2(�) = �22� jA(�)j2 (14)and the bispectrum is f3(�; �) = �(2�)2A(�)A(�)A(�+ �) (15)where A(�) = Z e�i�udu (16)If, for example, A(�) = 1=��=2 and the process is linear, then the power spectrum is 1=2���and the bispectrum �(2�)2 � 1��=2 � 1��=2 � 1(� + �)�=2 (17)The spectrum may be estimated and examined to see if it is 0 (Gaussian process). Suppos-ing that the denominator does not vanish, the bicoherencejB(�; �)j2 = jf3(�; �)j2f2(�)f2(�)f2(�+ �) = �2(2�)4 � (2�)6�6 = 2 (18)is de�ned and constant for this linear process case, see Brillinger [2]. In the case that theprocess Yt is reversible (probabilistic properties of fYtg and fY�tg the same), the imaginarypart of the bispectrum is identically 0. See Brillinger and Rosenblatt [3]. Reversibility is notthe property of most music.The process (2) will have nonzero bispectrum to the extent that the frequencies �j,present for t near �j, satisfy relations such as �j + �j0 = �j00 .Under regularity conditions (including stationarity and mixing) estimates fT2 (�),fT3 (�; �) of the power and bispectra may be constructed that are asymptotically indepen-dent and normal. These may be used to form the bicoherence estimate, jBT (�; �)j2, whoseapproximate statistical properties are indicated in the Appendix.For a given sample value of the bicoherence, jBT (�; �)j2, one may compute the approx-imate prob-value of achieving a value as large or larger in the null Gaussian case. The null
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p-values > 0.95 : 4.7%Figure 7: Square root of the bicoherence estimate and contour plots of prob-values for non-Gaussianity and non linearity respectively for the smoothed zero crossings of the Co�ee Can-tata.distribution is an exponential, see Appendix. Such prob-values are contoured in Figures 7,8 and 9, for the Co�ee Cantata.Likewise to assess the possibility that the basic process is linear, one may computê = ave jBT (�; �)j2 (19)with the average over all bicoherence estimates and then compute the approximate the prob-value corresponding to the deviate jjBT (�; �)j2 � ̂j. Again the prob-values are contouredfor the Co�ee Cantata. Details of the approximation are given in the Appendix.These procedures, of using test statistics that are functions of (�; �), rather than someglobal statistic, have the advantage of indicating the character of departure if the null hy-pothesis appears rejected.Nikias and Mendel [14] provide a review of higher order spectra and some of their uses.5.1 Signal RepresentationWe checked for nonGaussianity and nonlinearity in the time series used in section 4. The se-ries studied, Co�ee Cantata, lasted 64.15 seconds and was sampled at 8000 Hz. After apply-ing the Voss �lter every 200th observation was retained, 2566 data points in all. The spec-



D.R. Brillinger, R.A. Irizarry 17
Sqrt{Bicoherence}

Lambda (Hz)

M
u 

(H
z)

0 5 10 15 20

0

5

10

15

20

Examining Gaussianity

Lambda (Hz)

M
u 

(H
z)

0 5 10 15 20

0

5

10

15

20

p-values > 0.95 : 68%

Examining Linearity

Lambda (Hz)

M
u 

(H
z)

0 5 10 15 20

0

5

10

15

20

p-values > 0.95 : 24%Figure 8: Square root of the bicoherence estimates and contour plots of prob-values for non-Gaussianity and non linearity respectively for the \instantaneous" power obtained from theCo�ee Cantata signal.tra were estimated from this data. The resulting estimates can be seen in Figure 7 and 8.For the zero crossings data, Gaussianity is being rejected, but not linearity. For the instan-taneous power both Gaussianity and linearity are being rejected.5.2 Score RepresentationSome similar computations were done for the score representation. In estimating the bico-herence we took 10 stretches. As a consequence the stretches were short, ranging from 12 to120 points. The resulting estimates for the score of the Co�ee Cantata can be seen in Fig-ure 9, now graphing the 50% and 90% contours. In this case Gaussianity appears rejectedbut not linearity.6 Discussion and ConclusionsWe began with the question of what makes music, music. To address it we consideredwhether certain parametric forms �tted well, whether associated time series were Gaussianand whether they were linear. A broadly ranging selections of pieces were analyzed. The
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D.R. Brillinger, R.A. Irizarry 19A AppendixA.1 Third Order SpectraWe provide the basic de�nitions and properties in order that others can directly reproducesuch study.A.1.1 De�nitions and EstimatesBispectral Analysis is of use in discerning nonGaussianity of a time series and also in exam-ining the series for nonlinearity.Let Yt; t = 0;�1;�2; ::: denote a stationary time series. Let it have mean c1, co-variance function c2(u) and third moment functionc3(u; v) = E ([Yt+u � c1][Yt+v � c1][Yt+u+v � c1]) (20)The bispectrum at bifrequency (�; �) is de�ned byf3(�; �) = 1(2�)2 XX c3(u; v)e�i(u�+v�) (21)and the bicoherence by jB(�; �)j2 = jf3(�; �)j2f2(�)f2(�)f2(�+ �) (22)The fundamental domain of these parameters is 0 � � � �, � + �=2 � �.There are a variety of fashions by which the bispectrum may be estimated. A conve-nient one is: let the data be broken into L stretches of length V , so that T = LV . Nextcompute the tapered Fourier Transform of the lth stretch,dV (�; l) = V�1Xv=0 h� v + 1V + 1�YlV+ve�iv� (23)for l = 0; :::; L� 1. Then form the third order periodogram of the lth stretchIV3 (�; �; l) = 1(2�)2V h3dVY (�; l)dVY (�; l)dVY (�+ �; l) (24)where h3 = R h(u)3du. The estimate of the bispectrum is nowfT3 (�; �) = 1L L�1Xl=0 IV3 (�; �; l) (25)In forming the estimate of the bicoherence, the power spectrum is estimated by similarly av-eraging the second order periodograms of the L stretches.In our empirical work no taper was employed, rather the series were pre�ltered by �ttingan autoregressive, prior to computing the spectral quantities. Such a linear �ltering retainsthe 0 bispectral property of a Gaussian process and the linearity property of a linear process.



D.R. Brillinger, R.A. Irizarry 20A.1.2 Statistical properties of the estimatesSuppose that the bispectrum is estimated, as above, by averaging the third-order peri-odograms of L contiguous segments of length V of a series of length T=LV. Then, for (�; �)not on the boundary of the fundamental domain, fT3 (�; �) is asymptotically complex normalwith mean f3(�; �) and varianceh6h23 � 12�f2(�)f2(�)f2(�+ �)VL (26)provided V , L=V !1 as T !1. It is noteworthy that for consistency a large number, L,of individual stretches will be required. Further estimates at distinct frequencies are asymp-totically independent.It follows that when f3(�; �) = 0, jfT3 (�; �)j2 is asymptoticallyh6h23 � VL � 12�f2(�)f2(�)f2(� + �)�22=2 (27)which result may be used to examine the hypothesis f3(�; �) = 0. In the examples, prob-values based on this distribution are graphed.In the case that f3(�; �) 6= 0 the variate jfT3 (�; �)j2 will be approximately normal withmean jf3(�; �)j2 and variance2h6h23 � VL � 12�f2(�)f2(�)f2(�+ �)jf3(�; �)j2 (28)In other words the large sample distribution of the bicoherence estimatejBT (�; �)j2 = jfT3 (�; �)j2fT2 (�)fT2 (�)fT2 (� + �) (29)will be approximately exponential with meanh6h23 � VL � 12� (30)when f3(�; �) = 0. It will be approximately normal with mean, the bicoherence,jB(�; �)j2 = jf3(�; �)j2f2(�)f2(�)f2(�+ �) (31)and variance 2h6h23 � VL � 12� f3(�; �)j2f2(�)f2(�)f2(� + �) (32)when f3(�; �) 6= 0. The quantity jBT (�; �)j will then be approximately normal with meanjB(�; �)j and variance 12 � h6h23 � 12� � VL (33)This approximation follows via the delta-method.



D.R. Brillinger, R.A. Irizarry 21A.1.3 Related WorkRosenblatt and Van Ness [18] developed various asymptotic properties of bispectral esti-mates, as did Brillinger [2] for higher-order spectral estimates. Huber et al. [10] consideredthe estimation of the bicoherence and in particular suggested approximating its distribu-tion, when the population value was 0, by a �22. Elgar and Guza [7] investigated the accu-racy of this approximation. Rao and Gabr [17] and Hinich [8] proposed global bispectrum-based tests for the nonGaussianity and nonlinearity of a stationary process. Rao and Gabrstructured the problem as assessing whether all components of a multivariate normal havethe same mean. Hinich (see also Brocket et. al. [5]) based tests on the interquantile rangeof sample bicoherence values. Terdik and Math [20] note that the bispectrum of a process,such that the linear predictor is the quadratic, satis�es a particular algebraic identity anduse this to assess possible linearity.A.2 Obtaining the Numerical RepresentationsA.2.1 Signal RepresentationA song was chosen from a Compact Disc. It was down-loaded into a Mono .au �le sampledat 8000 Hz using a CD-ROM and software for the Sparc machines. To go from stereo to amono signal the two channels were averaged. Our statistical analysis was done mostly by S-Plus which can't read .au �les. We altered Thau's program xplay, a sound player for SunSparc machines, which can handle AIFF, .au, and some WAVE �les, so that it would save a�le with the numbers corresponding to the sampled signal in a �le readable to S-Plus. Dueto technical details of the way Compact Discs are recorded and the way xplay works theunits of the sampled audio signal are completely arbitrary.To obtain the smoothed zero crossings or \intantaneous" pitch and power from thesampled signals we wrote C programs that performed the zero crossing calculation, the band-pass �ltering, the squaring and the lowpass �ltering relatively quickly. The �ltering was doneby calculating the FFT of the signal, setting the coe�cients of the pertinent frequencies tozero and then performing the inverse FFT.A.2.2 Score RepresentationA piece of music was selected. Then using an EMU Proteus Keyboard, a Mac Power Book520 and a program we wrote in Max (see Rowe [19] for some information on Max) we savedthe midi-numbers and duration into text �les. We used MIDI-note number 36 (lower thanthe lowest note in any of the score) to denote rests. These �les where made readable to S-Plusand Matlab using Pearl. Using S-Plus we created various functions that converted the rawdata into objects of the time series and marked point process representations respectively.A.2.3 Time Series RepresentationFor each score we had two time series; one for the MIDI-numbers and the other for the fre-quencies. To do the analysis on the MIDI-number time series we took care of the rests by



D.R. Brillinger, R.A. Irizarry 22extending the previous notes over the duration of the rests. In the case of a song startingon a rest we simply ignored that part of the song.For the case of the respective frequencies we assigned frequency 0 to the rests. This rep-resentation is probably more representative of the music, so we focused our attention on it.A.2.4 Playing the dataTo play the data we used Matlab. The command sound takes as an argument a vector. Thisvector is taken to be a signal sampled at 8192 Hz (at least on Sparcs, it varies for other com-puters). Each k-th element of the vector is taken to be the sample at time k8192 seconds. Thefollowing Matlab code performs the work.%note is a vector containing the MIDI-note numbers(rests are 36)%dur is a vector conatining the durations of these notes%rate is the sample ratefor i = 1:length(note);t = [0:rate*dur(i)];window = 1-cos(2*pi/(rate*dur(i))*t); %TUKEY's WINDOWt = t/rate*2*pi;if note(i) == 36 %in our case MIDI-number 36 in the raw data%represented restssignal=[signal,t*0];elsey = window .* sin(note(i)*t);signal = [signal,y];end;end;sound(signal)A.3 Notes on the Voss TechniqueSuppose the signal may be writtenY (t) = R(t) cos (Z(t)t+ �(t)) (34)with Z(t) the instantaneous frequency, R(t) a slowly changing amplitude and �(t) a slowlychanging phase. For Z(t) in the passband of :1 to 10 kHz, after �ltering the signal will re-main essentially (34). With squaring it becomesR(t)2 [1 + cos (2Z(t)t+ 2�(t))] =2 (35)After the lowpass �ltering to [0; :01] kHz one has approximatelyR(t)2=2 (36)in other words essentially the squared envelope of the signal (34).In terms of the representation (2) one has approximatelyV 2j h t� �j�j !2 =2 (37)for t near �j, provided �j is in the band [:1; 10] kHz. A spectrum analysis of this will bringout the periodicity properties of the point process f�jg, which in music can be regarded as
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