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Abstract

It is desired to express the relationship between the components of a bivariate
time series. What is unusual is that the components are observed at different times
and that the observation times are irregularly distributed. The problem of different
sampling times is dealt with by interpolating the values of the dependent series to the
times of the independent. This is followed by nonparametric regression to estimate
the relationship. The research is motivated by data collected at a station along the
Solimões River in central Brazil and also at a second station along a branch of the
Solimões. Of interest to geographers is the possible change in the proportion of the
Solimões waters entering the branch. This is because an increased flow of Solimões
water into the branch might lead to the branch’s widening and becoming the main
stream. This could have substantial environmental effects.

Keywords. Amazonia; irregular sampling times; marked point process; nonpara-
metric regression; river discharge; time series.

1 Introduction

Constance van Eeden has worked in many areas of statistics. Perhaps the problem
that she has studied that is closest to the work of this paper is that of density
estimation via kernels, e.g. [24]. Her work on that problem, like on many others, has
been via very careful analysis.

The genesis of our work is that H. O’R. Sternberg, Professor of Geography at
Berkeley, visited with a problem and a data set. In statistical terms the problem
concerned the development of an instantaneous relationship between the components
of a bivariate time series. The difficulty was that the components were sampled at
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different instants. Further the spacings of the time points were irregular. The series
were river flow rates measured at two places of a river system in Central Brazil.

According to Brazilian usage, the name Amazonas is applied to the Amazon river
below the mouth of the Rio Negro. Upstream from the city of Manaus the main stem
is known as the Solimões. Characteristically, the waters of the Solimões-Amazonas
deposit, fork and come together, embracing islands approximately lenticular in shape.
Strung along the river for many hundreds of kilometers, these islands split the stream
bed into a master channel and one or more side channels, called paranás. One such
channel exists just upstream from the mouth of the Rio Negro, where the Solimões
(Amazon) sends off a branch, the Paraná do Careiro, that rejoins the trunk stream
about 40 km. downvalley. Figure 1 shows various features. The large bright spot
midway up the figure is the city of Manaus. The light line heading across the figure
from the left to the right is the Solimões. The concern is the split of the Solimoes
just to the right of Manaus. The large dark river coming towards Manaus from
the upper right is the Rio Negro. This image was taken from the NASA web site
eosweb.larc.nasa.gov.

A reason for the study is that concern has been expressed that an increased flow
of Solimões water into the branch might lead to the widening of the Careiro and even
to its eventual usurpation of the trunk stream. Such a process is of scientific and
socio-economic interest, since it would destroy valuable floodplain land that supports
a significant farm population and tens of thousands of cattle. In the 1950s, the matter
drew the attention of Professor Sternberg, [19, 20]. In 1963 he coordinated a joint
project of the US Geologic Survey, the University of Brazil and the Brazilian Navy,
with the objective of carrying out discharge measurements in the Brazilian Amazon,
[17]. Following this initial work, the Brazilian government embarked upon a program
of systematic discharge measurements in Amazonia. This supplied the data of the
work. A collaborative paper planned with Professor Sternberg will highlight the
geomorphological framework of the problem, and further discuss analytical procedures
applied to the issue, [21].

Specific questions that arise are: Does the proportion of the discharge that enters
the Careiro depend on the discharge level of the Solimões? Is the relationship be-
tween the Careiro and the Solimões changing with time? Is the flow of the Solimões
increasing?

Seeking answers to these questions leads to some interesting statistical problems:
1. the series are sampled at different times, 2. the series are sampled irregularly,
3. the relationship is possibly nonlinear and 4. the need for some theoretical prop-
erties of the proposed solutions. To study the questions there appears a desire for
nonparametric estimates together with estimates of the associated uncertainty and
further an assessment of model fit. The emphasis of this paper is on the statistical
methods rather than the geographical interpretation of the empirical results obtained.
More careful checking of assumptions and serious evaluation of uncertainties is needed
before embarking on interpretations, [21].
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Figure 1: NASA image of Central Brazil. The large bright spot towards the middle is the city of
Manaus.

The sections of the paper are: Introduction, The data, Analytic formulations,
Results, Goodness of fit of the models, Some extensions, and Discussion and summary.
Lastly there is an Appendix laying out some analytic details and prooofs.

2 The data

The rivers’ flow rates are measured upriver on the Solimões at a station near the
town of Manacapuru. They are also measured at a station on the Paraná do Careiro.
These stations are approximately 90 km. apart. Figure 1 provides a NASA image of
the region on July 23, 2000.

The data available are for the years 1977 through 1998. Almost invariably they are



4 D. R. Brillinger

0 5000 15000 25000

0

5

10

15

20

25

30

Careiro

flow (m^3/sec)

0.5 1.0 1.5

0

5

10

15

20

velocity (m/sec)

40000 80000 140000

0

5

10

15

20

25

Solimoes

flow (m^3/sec)

0.8 1.0 1.2 1.4 1.6

0

5

10

15

20

25

velocity (m/sec)

Figure 2: Histograms of the discharge rates and velocities for the two rivers.
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Figure 3: The discharges of the Careiro and the Solimões Rivers in cubic-meters/second. The
points indicate the dates of available measurements.
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Figure 4: Observed flow rates of the two rivers plotted by day of the year.
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made on different days for the two stations because they are made by a single vessel
which has to journey the 90km. distance between the stations. For the Solimões
there are 100 measurements in all while for the Careiro there are 90.

The basic data are the measured river discharges, discharge being defined as: the
area of the section across the river where the measurements are made multiplied by
the water’s velocity. For these rivers the values are high going along with the fact
that the Amazon outputs a substantial proportion of the world’s fresh water. Figure
2 provides histograms of the flow rates and the rivers’ velocities. The rivers are seen
to flow at around 1 cubic-meter/sec. The discharge for the Solimões is quite a bit
higher than that of the Careiro while the velocities are comparable. The discharges
will fluctuate with the heights of the rivers. Time series plots of the data sets are
provided in Figure 3. One notes the irregularity of the measurement dates.

Figure 4 stacks the flow data for the whole period by day of the year. An annual
effect becomes apparent with the flows being high in July-August and low at October-
November. One again notes the irregularities of the measurement dates.

Figure 5 provides the cumulative counts of measurements made as a function of
date. Such a plot is useful for examining the stationarity of the measuring process,
specifically in the stationary case the points plotted will fluctuate around a straight
line. One sees for example that for the Solimões measurements were being made at a
higher rate at the beginning of the period of data collection. There are two noteably
flat stretches corresponding to measurements not being made often.

3 Analytic formulations

Let Y (t) denote the discharge rate of the Careiro at time t and X(t) that of the
Solimões. Being downriver the Careiro will be considered the dependent series and
the Solimões the explanatory. The model that will be considered is:

Y (t) = g(X(t)) + E(t), t = 0,±1,±2, ... (1)

with the error series E having mean 0. One might ask for example is the function g
linear? Is its derivative increasing? Is it changing with time?

Turning to statistical formulations of the problems one can start by thinking about
the classical situation where the data available are (X(t), Y (t)), t = 0, ..., T − 1, i.e.
the observations of the two components are made at the same times and are equi-
spaced.

For this model and smooth g(.) one could compute a kernel estimate of g(.). With
the weight function wT (.) such an estimate has the form

ĝ(x) =
∑

t

Y (t) wT (x − X(t))/
∑
t

wT (x − X(t))

at the point x. If the noise series, {E(t)} is white with variance σ2 the estimate’s
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Figure 5: The cumulative counts of measurements made for each river.



Sampled time series 9

variance is

var{ ĝ(x)|X} = σ2
∑

t

wT (x − X(t))2/(
∑

t

wT (x − X(t))2

If the variance of E(t) depends on the level of X it may be estimated for X = x by

σ̂2(x) =
∑

t

(Y (t)− ĝ(x))2 wT (x − X(t))/
∑
t

wT (x − X(t)) (2)

see Hardle [13]. This reference also provides a substantial review of nonparametric
regression in the case that the noise values are independent.

Alternately to estimate the function g one might employ a local linear estimate
such as produced by the Splus function loess(.) [11]. References concerned with
nonparametric regression in the presence of time series errors include: [1], [15], [23],
[14], [22] and [18].

The case of concern in this paper involves the data values

({X(σj)}, {Y (τk)}), j = 1, ..., JT ; k = 1, ..., KT

where T the observation interval is [0, T ) and where there are JT observations at the
times {σj} for the Solimões and KT at the times {τk} for the Careiro.

The observations are not in immediate correspondence, but many of the σj and
τk are close. (See Figure 6 below which graphs the Careiro times relative to those of
the Solimões.) This occurrence suggests that in the particular situation at hand one
might be able to obtain useful a estimate of g.

Two approaches come to mind directly. One could interpolate the Y (τk) values to
obtain estimates Ỹ (σj) and then work with the values (X(σj), Ỹ (σj)), j = 1, ..., JT

or one could interpolate the X(σj) to obtain estimates X̃(τk) and then work with the
values (X̃(τk), Y (τk)), k = 1, ..., KT . The first approach appears the simpler and will
be the one pursued. The second will be discussed later and some references provided.

Consider the model (1). The interpolated values can be written:

Ỹ (t) =
∑
k

Bk,1(t/T )Y (τk+1))

with the {Bk,1} B-splines of order 1, see the Appendix, [2], [12], [16] for details of
these. Next

Ỹ (σj) = Y (σj) + noise1

and from (1)
Y (σj) = g(X(σj)) + noise2

leading to
Ỹ (σj) = g(X(σj)) + noise2 + noise1 (3)

Because of the additivity of the overall error term, equation (3) has the form of
the nonparametric regression model, with the exception that perhaps the errors are
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Figure 6: A plot of the points (j, τk − σj), j = 1, ..., J

autocorrelated and heteroscedastic. The interpolation proposed involves only the
{Y (τk)} values, i.e. not the {X(σj)}. The kernel estimate of g(x) is now,

ĝ(x) =
∑
j

Ỹ (σj)wT (x − X(σj))/
∑
j

wT (x − X(σj)) (4)

with wT (x) = bT
−1w(bT

−1x) the kernel function. However the reasonableness
of standard errors provided by naive programs is suspect their being based on an
assumption of independent noise errors in (3).

In assessing the properties of the estimate it is assumed that the Careiro flow does
not change rapidly, see Assumption b) in the Appendix. Also as it takes some time
for the waters to flow from Manacapuru to Careiro time delay δ is included in the
model writing Y (t + δ) instead of Y (t).

Some large sample properties of the estimate, e.g. the variance, are developed in
the Appendix. The estimate is asymptotically unbiased, consistent and normal.

4 Results

Already Figures 2-6 have been introduced. Figure 6 provides information on the
relative timings of the Solimões and Careiro measurements. The center vertical line
corresponds to the times of Solimões measurements. Spread on either side of the line
are the nearby Careiro times. Careiro measurement times are seen to follow Solimões
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Figure 7: The points provide the positions (τk, Y (τk)), i.e. the actual data for the Careiro. The
lines join the positions (σj, Ŷ (σj)), i.e. the interpolated values.

to an extent and many occur within 7 days. There are enough near 0 that it seems
that reasonable estimation of g is possible. This type of rastor plot appears in [8].

We proceed following the scheme proposed in the previous section. The data
available are denoted {Y (τk)} for the Careiro and {X(σj)} for the Solimões. Being
downriver from Manacapuro the Careiro series is viewed as the dependent one.

To begin a linear interpolation spline is run through the Careiro data [2], [12].
Specifically the missing Careiro discharge values were estimated by linear spline in-
terpolation, i.e. a curve is passed through the points (τk, Y (τk)) and consists of
straight lines between the points. This has the advantage that if a σj is actually a
τk then the observation Y (τk) itself is used, i.e. no smoothing is carried out. Nearby
times will have nearby values. The linear spline was employed to avoid oscillations
between the data points, but higher-order splines may be considered.

In the computations the logarithms of the discharges are taken as the basic values
for analysis since the variance of the additive noise appeared more nearly constant
when logs were employed. Henceforth X and Y will refer to the logarithms of the
basic data. Figure 7 provides the results of the interpolation of the Y values. The
original data values (τk, Y (τk)) are plotted as points. The interpolated values are
joined by lines. The fitted values do not appear inappropriate.

Next the values Y (σj + δ̂) are estimated where the σj are the available times for
the Solimões and δ̂ is an estimate of the time that it takes the water to flow between
the two stations. The results of the interpolation are denoted Ỹ (σj + δ̂), j = 1, ..., J.
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The value δ̂ = .80 days employed is obtained using a distance of 90 km. and a speed
of 1.3m/sec. (See Figure 2.)

The model considered has now become:

Ỹ (σj + δ̂) = g(X(σj)) + noise (5)

and it is to be noted that the noise is additive.
Figure 8 plots the points (X(σj), Ỹ (σj + δ̂)), j = 1, ..., J and as a smooth curve

the estimate of g computed via a kernel smoother using a gaussian kernel. The curve
is approximately linear. The dashed lines are approximate 95% marginal confidence
limits based on the variance formula (9) of the Appendix. Some 6 or 7 of the 87
points lie outside the 95% bounds.

The kernel smoother has the disadvantage of difficulties at boundaries, but it has
the advantage of simplicity in the derivation of analytic results.

5 Goodness of fit of the model

The confidence limits of Figure 8 are basic to drawing inferences. The assumptions
of independence and constant variance involved need to be considered.

First consider the assumption of constant variance. The top panel of Figure 9
plots the residuals Êk = Y (τk) − ĝ(X̃(τk − δ̂). One notes some narrowing on the
righthand side, but perhaps not enough to invalidate the use of an assumption of
heteroscedasticity.

Next the assumption of independence is examined. A convenient way to look for
time series autocorrelation is to examine a periodogram. Periodograms can highlight
a broad variety of departures from white noise, see the discussion in the Appendix.
Here the form

1
2πT

|
∑
k

Êk exp{−iλτk}|2, −∞ < λ < ∞

is computed. Inferences can be made based on approximating the distribution by a
multiple of a chi-squared. This is discussed in the Appendix.

The results are presented in Figure 9. There are so many points in the periodogram
plot because the sampling interval employed in its computation was 1 day. One
notes 5.03% of the periodogram ordinates lying outside the 95% confidence limits
in the botton panel of Figure 9. One has no strong evidence for a departure from
approximately white noise errors.

In summary the results of the studies presented in the two panels of Figure 9
suggest that assumptions leading to the uncertainty limits of Figure 8 may not be
inappropriate.
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Figure 9: The top panel provides the residuals of the Careiro data as explained by the interpolated
Solimões values. The bottom panel provides the periodogram. The horizontal line in it is the
average of all the periodogram values. The dashed lines in the lower panel provide approximate
95% marginal confidence limits.



Sampled time series 15

6 Discussion and summary

The series {X(t}) and {Y (t)} were sampled irregularly and at different times, yet it
has proved possible to proceed to study their relationship via smoothing and Fourier
analysis. To begin some descriptive statistics were presented, then modelling was
carried out. An approximate linear dependence of the Careiro flow upon that of the
Solimões flow was found.

Contributions of the work include assessing the whiteness of a sampled time series
via a periodogram and derivation of some properties of a nonparametric estimate
involving interpolation of the dependent variate’s values.

The method of predicting the Y (σj) could perhaps be improved, e.g. by including
a seasonal effect explanatory series. There are other methods of constructing approx-
imate confidence intervals such as the bootstrap. Also the problem of the estimation
of the smoothing parameter, bT , might be considered.

As mentioned earlier an alternate approach to dealing with the irregularity of
observation times is to interpolate the {X(σj}) to the {τk} time points. This may be
implimented by an interpolation spline as was done to obtain the {Ỹ (σj)}. Supposing
the values (X̃(τk), Y (τk)) are then employed in a nonparametric regression analysis
the circumstance could be viewed as an errors in variables problem. One difference
from the classical situation though is that here one has some control over the bias and
the error variance through choice of the interpolation/smoothing procedure. There
is a literature on this situation, [3] and [10]. There is also a related literature on
endogeneity in nonparametric models [5]. The approach actually implimented is sim-
pler because of the additivity of the noise, the fact that one may argue conditionally
on the X-values and because it seemed allowable to treat the error values as white
noise. It remains to be seen which approach leads to better estimates and this surely
depends on the values of JT and KT , which series can be better interpolated amongst
other things. It may be that interpolating each series to the same equi-spaced grid is
to be preferred.

In connection with the interpretation of the results of the data analyses it needs
to be remembered that the work is preliminary. It will be further developed in [21].
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Appendix

Throughout the Appendix the arguments are conditional on X as is usual in statistical
inference.
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The theorems do not present best possible results rather the material has been
set up to suggest possible routes for later work. In the data analyses linear splines
have been employed, and the analytic results developed. Further the error process
E has been assumed to have cumulants of all orders in order to obtain asymptotic
normaility directly. Lastly the case of a kernel smoother is the one studied. This
was done in the interests of simpler proofs. The results are preliminary, proofs are
sketched and assumptions have been set down rather casually. It is possible to bound
the errors of all the approximations however.

Consistency and asymptotic normality.
The model considered is

Y (t) = g(X(t)) + E(t), t = 0, ..., T − 1

with the distinction that the data values available are

X(σj), j = 1, ..., JT ; Y (τk)), k = 1, ..., KT

with 0 ≤ σk, τk < T . The results are developed for the case of a kernel smoother.
Notations.

The spline of order 1 based on the points {(τk, Y (τk))} is denoted Ỹ (t). It may
be written

Ỹ (t) =
∑
k

Y (τk+1)Bk,1(t/T )

where the k-th B-spline function of degree 0 with knots τk is given by

Bk,1(t/T ) = (t − τk)/(τk+1 − τk) for τk ≤ t < τk+1

= (τk+2 − t)/(τk+2 − τk+1) for τk+1 ≤ t < τk+2

and equals 0 otherwise.
The kernel smooth studied to estimate g(x0) is

ĝ(x0) =
∑
j

wT (x0 − X(σj))Ỹ (σj) /
∑
j

wT (x0 − X(σj)) (6)

In this definition
wT (x) = b−1

T w(b−1
T x)

with bT > 0 a binwidth.
To develop asymptotic approximations the following forms are used

g(X(t)) = HT (t) = h(t/T ), X(t) = x(t/T )

For a a function on [0,1]
||a|| = sup

u
|a(u)|
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Assumptions. Basic ones include
a) The kernel w is non-negative, of finite support, continuous and

∫
w(u)du = 1.

b) The functions h and x are in C1[0, 1]. The equation x(u) = x0 has a finite
number of solutions.

c) The sequence {τk} is strictly increasing. There exist FM (u) and 1-1 FN (v) such
that

F̂M(u) =
1
JT

#{σj/T ≤ u; j = 1, ..., JT} → FM (u)

and
F̂N (v) =

1
KT

#{τk/T ≤ v; k = 1, ..., KT} → FN (v)

weakly as T → ∞. The functions FM and FN have densities fM and fN .
d) The process E is zero mean white noise and has cumulants of all orders.

Results.
Lemma 1. Under Assumption b)

H̃T (t) = HT (t) + O(∆2
TT−2||h(2)||) (7)

as T → ∞ where ∆T = max{τk+1 − τk, k = 1, ..., KT} and h′ is the derivative of
h. The error term is uniform in t.
Proof. Since h is in C1[0, 1], h̃ the spline of order 1 passing through the points
(vk, hk = h(vk)), satisfies

|h(v) − h̃(v)| ≤ 1
8
∆2 sup

v
|h(2)(v)|

where ∆ = max{vk+1 − vk}, [12]. The result of the Lemma follows taking v = t/T ,
vk = τk/T and HT (t) = h(t/T ).
Theorem 1. Under the Assumptions

E{ĝ(x)} = g(x) + O(bT ) + O(∆2
TT−2) (8)

Proof. To begin because the spline is linear in the data values

Ỹ (t) = H̃T (t) + Ẽ(t)

From the result (7) and the fact that the series E has mean 0

E{
∑
j

Ỹ (σj)wT (x − X(σj))} /
∑
j

wT (x − X(σj))

=
∑
j

(g(X(σj)) + O(∆TT−1))wT (x − X(σj)) /
∑
j

wT (x − X(σj))

From the non-negativity, the finite support of w and the boundedness of the derivative
of h

g(X(σj)) = g(x) + O(bT )
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uniformly giving the result.
Corollary. Under the Assumptions and if ∆T /T, bT → 0 as T → ∞ the estimate
ĝ(x) is asymptotically unbiased.
Theorem 2. Under the Assumptions with the E(τk) independent and of variance σ2

var{ĝ(x0)} = σ2
∑
k

[
∑
j

wT (x0 − X(σj))Bk,1(
σj

T
)]2 / (

∑
j

wT (x0 − X(σj)))2 (9)

Proof. By construction

Ẽ(t) =
∑
k

E(τk+1)Bk,1(
t

T
)

Now
∑
j

Ẽ(σj)wT (x − X(σj)) =
∑
k

[
∑
j

Bk,1(
σj

T
)wT (x − X(σj)]E(τk+1) (10)

and the result is immediate since the error series, E, is white noise with variance σ2.
The form (9) may be contrasted with that were the values X(σj), Y (σj)), j =

1, ..., JT available. The variance then would be

σ2
∑
j

wT (x0 − X(σj))2 / (
∑
j

wT (x0 − X(σj)))2

Corollary. With Ê(τk) = Y (τk)− ĝ(X̃(τk)) the error variance σ2 may be estimated
by ∑

k

Ê(τk)2 / KT

The asymptotic behavior of the variance may be investigated further. In the
proofs below certain sums will be replaced by integrals. The accuracy of these
approximations may be bounded using Lemma 4 below. Basically one will want
supu|#{σj/T ≤ u}/JT − FM (u)| and supv |#{τk/T ≤ v}/KT − FN (v)| to become
small at a fast enough rate as JT , KT → ∞.

Consider the variance at X(t) = x0.
Lemma 2. Under asumptions like those already indicated plus bT → 0 and JT → ∞
as T → ∞ the denominator of (6) is asymptotically

(JT

∑′
fM(x−1(x0))/|x′(x−1(x0))|)2

where the sum,
∑′ is over the solutions of x(u) = x0.

Proof. Consider
1
JT

∑
j

wT (x0 − x(σj/T ))
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=
∫

wT (x0 − x(u))dF̂M(u)

≈
∫

b−1
T w(b−1

T (x0 − x(u))fM(u)du

≈
∑′

fM (x−1(x0)
1

|x′(x−1(x0))|
∫

w(u)du

Bounds on the error of approximating the sum by an integral may be found using
Lemma 7.
Lemma 3. Under the assumptions of Lemma 2 plus KT → ∞ the numerator of (6)
is asymptotically

J2
T

1
bTKT

∑′
fN (x−1(x0)

−1
fM (x−1(x0))2

1
|x′(x−1(x0)|

∫
w(u)2du

Proof. Consider

∑
k

[
∑
j

Bk,1(
σj

T
)wT (x0 − X(σj))]2 ≈ J2

T

∑
k

[
∫

Bk,1(u)wT (x0 − x(u))fM(u)du]2

Because 2TBk,1(u)/(τk+2−τk) acts like a Dirac delta function centered at τk+1/T for
a continuous function a

∫
Bk,1(u)a(u)du ≈ a(τk+1/T )(τk+2 − τk)/2T

With the approximation

τk+2 − τk

2T
≈ 1

KTfN (τk/KT )

the expression being studied is approximately

J2
T

KT

∑
k

(τk+2 − τk)2

4T 2
wT (x0−x(τk+1/T ))2fM(τk+1/T )2 ≈ J2

T

KT

∫ 1
fM (v)2

wT (x0−x(v))2fM(v)2fN (v)dv

With the change of variable s = x(v) this becomes

J2
T

KT

∫
wT (x0 − s)2fM (x−1(s))2fN (x−1(s))−1 1

|x′(x−1(s))|ds

giving the indicated result as T → ∞.
Corollary 1. The variance of ĝ(x0) is asymptotically

σ2

bTKT

∑′
fN (x−1(x0))−1fM (x−1(x0))2

1
|x′(x−1(x0)|

∫
w(u)2du / (

∑′
fM (x−1(x0))/|x′(x−1(x0))|)2

Corollary 2. Assuming in addition that bTKT → ∞ the estimate is consistent.
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The result simplifies when fN ≡ fM .
Theorem 3. Assuming that E(t) has finite cumulants, κm, m = 1, 2, ...

(ĝ(x) − E{ĝ(x)}) /
√

var{ĝ(x)}

is asymptotically normal with mean 0 and variance 1.
Proof. The cumulant of order m of (10) is

κm

∑
k

[
∑
j

Bk,1(
σj

T
)wT (x0 − X(σj))]m

Arguing as above one sees that this is asymptotically

κm

bm−1
T Km−1

T

∑′
fN (x−1(x0))1−mfM (x−1(x0))m 1

|x′(x−1(x0)))|
∫

w(u)mdu

The standardized cumulants of order m > 2 are seen to tend to 0 as T → ∞. The
normal distribution being determined by its moments, the Theorem follows.

Sampled time series.
Consideration next turns to the logic lying behind the model assessment via the

periodogram of the residuals.
A sampled time series may be represented as {R(t) = M(t)X(t), t = 0,±1,±2, ...}

where {X(t), t = 0,±1,±2, ...} is the series and {M(t), t = 0,±1,±2, ...} is a 0-1
valued series representing the sampling times, {σj}. M takes on the value 1 when
the X observation is present and 0 otherwise. The non-zero values of R are the
{X(σj)}. The series R reflects the statistical properties of the series X and M . For
example if X and M are mutually independent and stationary with power spectra
fXX(λ), fMM(λ) then the process R has power spectrum

fRR(λ) = c2
MfXX(λ) +

∫ π

−π
fMM(λ − α)fXX(α)dα

assuming further that X has mean 0 and that M has mean cM . This expression was
given in [4] and follows from Example 2.10.4 in [6]. From it one sees that if X is white
noise then the spectrum of R is constant. The heuristics of this result are clear: if
the series is white then the sampled values are a separate selection and themselves
white. One has a means of assessing whether a sampled time series is white. (These
remarks correct some incorrect discussion in [9].)

The spectrum of the series R may be estimated by smoothing the periodogram

1
2πT

|
T−1∑

0

e−iλtR(t)|2 =
1

2πT
|
KT∑
1

e−iλτkX(τk)|2
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for example. In many situations when LT periodogram ordinates are averaged f̂RR(λ)/fRR(λ)
is distributed approximately as χ2

2LT
/2LT . When LT → ∞ as T → ∞ the asymp-

totic distribution of log(f̂RR(λ)/fRR(λ)) is normal with mean 0 and variance 1/LT .
For examples of the assumptions leading to such results see e.g. [6]. Such results

are often used to set confidence limits for a spectrum estimate. They may also be
used to test whether fRR(λ) = γ2, e.g. by constructing confidence bounds in a plot
of the estimated spectrum f̂RR(λ). Such a test will be consistent at frequency λ as
LT → ∞ for √

LT log(f̂RR(λ)/γ2) =√
LT log(f̂RR(λ)/fRR(λ) +

√
LT log(fRR(λ)/γ2)

The first term here is asymptotically standard normal while when fRR(λ) 6= γ2 the
absolute value of the second grows to infinity as LT → ∞.

Figure 9 presents the spectral results taking R = Êk = Yk − ĝk. In Figure 9 the
baseline plotted is an estimate of γ2, specifically the average of all the periodogram
ordinates. It tends to

∫
fRR(λ)dλ and has variance O(1/T ), i.e. its variability may

be neglected.
Lemma 4. Let h(u) be a function with variation V (h). Let F (u) be a distribution
function on (−∞,∞). Given u1, u2, ..., uJ let

F̂ (u) = #{j|uj ≤ u}/J

and let
dJ = sup

u
|F̂ (u)− F (u)|

Then
| 1
J

∑
j

h(uj) −
∫

h(u)du| ≤ V (h)dJ

Proof. See [7].


