
1

 SOME INFINITY THEORY FOR PREDICTOR ENSEMBLES

 Leo Breiman
Statistics Department

 University of California
 Berkeley, California
 leo@stat.berkeley.edu

 Technical Report 577 (August 2000)

 Abstract

To dispel some of the mystery about what makes
tree ensembles work, they are looked at in
distribution space i.e. the limit case of "infinite"
sample size. It is shown that the simplest kind of
trees are complete in D-dimensional space if the
number of terminal nodes T is greater than D. For
such trees we show that the Adaboost minimization
algorithm gives an ensemble converging to the
Bayes risk. Random forests which are grown using
i.i.d random vectors in the tree construction are
shown to be equivalent to a kernel acting on the
true margin. The form of this kernel is derived for
purely random tree growing and its properties
explored. The notions of correlation and strength
for random forests is reflected in the symmetry and
skewness of the kernel

1 Introduction

Using ensembles of predictors for classification and regression has proved to
give more accurate results than use of a single predictor. Many alternative
algorithms have been introduced and tested over the last few years. But our
knowledge so far is mainly empirical, with little theory to explain why and
how the generalization error is so significantly lowered on most data sets.

For a while, the concepts of bias and variance, originating in regression and
extended to classification showed some promise of helping our under-
standing. Later empirical work cast a shadow over this hope. While bagging
(Breiman[1996]) was a simple and understandable algorithm, it did not
perform as well as Adaboost, a more complex algorithm originated by Freund
and Schapire[1996]), whose ability to lower generalization error is not yet
fully understood. Efforts to interpret it have so far proved incomplete. (For

2

performance comparisons see Drucker, H. and Cortes, C. [1995], Bauer, E. and
Kohavi, R. [1999] ,Dietterich, T. [1998])
1.1 Classification

In classification, there appear to be two distinct ways of forming ensembles.
One consists of arcing algorithms (including Adaboost) which have the
characteristics:

i) They function deterministically, with no random elements, growing
the ensemble by iterative reweightings of the training set.

ii) Using weak classifiers i.e. small trees, to form the ensemble gives the
best results.

iii) The voting is weighted.
iv) They can all be cast as down-the-gradient methods to minimize a target

function defined on the training set.

Examples are Adaboost and its variants-- arc-x4 (Breiman[1998]), the various
margin-function minimizers explored by Mason et al. [2000], the logit-boost
methods of Friedman et al[1998] and others.

The other class of algorithms, called randomization algorithms, is
characterized by:

i) Randomness is introduced into the training set or the tree
construction.

ii) They work best using the largest tree possible.
iii) The voting is unweighted.
iv) The framework for their understanding is in terms of

the correlation between members of the ensemble and the
"strength" of each member.

Examples are bagging (Breiman[1996]), random split selection
(Dieterrich[1998]), randomizing outputs (Breiman[1998a]), random feature
selection (Amit and Geman[1997], Breiman[1999]), and perfect random trees
(Cutler[1999]).

The accuracy's of these two different types of algorithms is comparable
(Breiman[1999]). But they work differently.

1.3 My Kingdom for Some Good Theoretical Explanations

The area of ensemble algorithms is filled with excellent empirical results,
but the understanding of how they work is a scarce commodity. To this day,
we have little understanding of how Adaboost produces such low
generalization error and does not overfit as more and more predictors are
added to the ensemble (although I have some guesses).

3

Only recently has some theoretical work appeared {Bhulmann and Yu [2000])
which explains how bagging works in some cases. But this is far from
understanding how more complex ensemble algorithms work. This paper
attempts to fill a small space in the vacuum. The framework given in Section
2 is interesting but unrealistic. But it results in some increased
understanding of the ensemble mechanisms.

In particular, we are able to pinpoint the differences between the two methods
of constructing classifier ensembles--to see what the role of randomness is, as
well as partially dispelling other mysteries.

2 Theoretical Assumptions and Outline of results

2.1 Framework

We work in distribution space. Put another way, in infinite sample space
(hence the title). The outputs and inputs are represented by two random
vectors Y,X whose distribution are known and X is assumed distributed on a
finite closed D-dimensional Euclidean rectangle, RD. The distribution of X is
given by P(dx) which is assumed to be absolutely continuous w.r. to Lesbegue
measure on D dimensions so that P(dx)=f(x)dx. The distribution of Y is given
by P(y|x). Both distributions are assumed known.

Only the two class situation is considered. The members of the ensemble
will be trees, all with the same number T of terminal nodes, formed by cuts
parallel to the axes (although it will become clear how this generalizes).
Also, they will be ±1trees. This means that to each terminal node is assigned
the value either +1 or - 1. Ordinary trees with arbitrary values attached to
their terminal nodes could be used, but in our context they offer no advantage
over ±1trees.

2.2 Non-Technical Outline of Results

In section 3 we define a set of classifiers ς to be complete on RD if every real-
valued function on RD is equal to a linear combination (perhaps infinite) of
classifiers in ς . We show that the class of ±1 trees with T terminal nodes is
complete if T>D. A simple example shows that stumps, with T=2, is not
complete if D=2.

The implication is that a linear combination of trees with T>D terminal
nodes can achieve the minimal error rate (Bayes risk). The question this
raises is how to compute the coefficients of a combination that will give
minimum error. The fundamental down-the-gradient algorithm for arcing is
defined in Section 4. This gives a method for evaluating coefficients that

4

minimize any target function. In Section 5 the minimization algorithm
applied to an exponential function (Adaboost analog) is shown to converge to
the minimum possible error (Bayes rate).

Section 6 looks at randomization algorithms for constructing ensembles. We
show that using trees with a fixed number of terminal nodes the
randomization produces a kernel type algorithm for separating the two
classes. In Section 7 an analytical form is found for the kernel for a purely
random tree construction. Its shape is studied to give some idea of random
forest kernels.

In Section 8, we look at the relationship between the kernel shape and the
two concepts of correlation and strength that have so far been used to
understand the action of random forests. The symmetry of the kernel
depends on correlation between trees in the forest--the lower the correlation,
the more symmetry. Its skewness depends on the "strength" of the
individual classifiers in the ensemble. We show, by example, the type of
boundaries between classes for which skewness is necessary. The results also
show why using the largest trees possible result in the best accuracy.

Section 9 is devoted to unanswered questions. Perhaps the most important is
what light these results shed about prediction using ensembles on finite
training sets. My conjectures about Adaboost are stated.

3. Completeness

First some familiar Hilbert space definitions and properties.

Definition 1. Let L2(P) be the space of functions on RD that are square-

integrable with respect to P(dx). A set of functions F in L2(P)will be called

complete if the L2 closure of the set of all finite linear combinations of

functions in F , denoted by

L2(F), equals L2(P) .

Property 1. A set of functions F is complete if and only if there is no non-
zero function g in L2(P) such that (g,f)=0 for all f ∈F .

Note: (f ,g)= f (x)g(x)P(dx)∫

Proposition 1. A set of functions F is complete if

L2(F) includes the

indicators of all D-dimensional subrectangles of RD .

Proof: Every function in L2(P) can be L2 approximated by a linear

combination of indicator functions of disjoint rectangles. Hence the

5

proposition follows.

3.1 ±1 Trees.

The ±1 trees are that set of trees most commonly used in used in two-class
classification.

Definition 2. h(x) is a ±1tree if the T terminal nodes are formed by successive
univariate splits of the input variables such that for all x in a given terminal
node, h(x) is always+1 or always -1.

Proposition 2. If T>D the class of ±1trees is complete in L2(P) .

Proof: To form the indicator function of the rectangle

 R0 ={r1 <x1 ≤s1 ,r2 <x2 ≤s2 , ... ,rD <xD ≤sD}

proceed as follows: trees with T terminal nodes use T-1 splits. If T>D , the
splits can be used to make a tree Tr1 which contains the rectangle

 R1 ={x1 ≤s1 ,x2 ≤s2 , ... ,xD ≤sD}

as one of its terminal nodes with the value +1. Let Tr2 be a tree with exactly
the same terminal nodes as the first but with the value of each node reversed

except for R1. Then .5*Tr1+.5*Tr2 is the indicator of R1. Repeating the above
process, construct the indicator function of

 R2 ={x1 ≤r1 ,x2 ≤s2 , ... ,xD ≤sD}

Subtracting this from the indicator of R1 gives the indicator of

R3 ={s1 <x1 ≤r1 ,x2 ≤s2 , ... ,xD ≤sD}

and continuing this process leads to the indicator of R0 .

Proposition 2 is probably if and only if. For instance, the class of stumps (two
terminal node trees) is not complete in D=2. Take P uniformly distributed on
the square (-1,+1)2. Take g(x) to equal +1 in the first and third quadrants, and
-1 in the second and fourth. Then (h,g)=0 for every two node ±1tree h(x).

6

3.2 Implications for Predicting With Ensembles

The implications of completeness in terms of using ensembles for prediction
are encouraging. Suppose that the loss function L(Y,φ(X)) is a measure of
the error in using φ(X) to predictY . The expected loss is

L*(φ)=EY ,X L(Y ,φ (X))

where the subscripts indication expectation with respect to Y,X . Assume that
functions exist in L2(P) that minimize L*(φ). Then:

Theorem 1 In RD there exist linear combinations of ±1trees with T>D that
converges in L2(P) to any minimizer of L*(φ) that is in L2(P) .

We illustrate with classification. Here:

L*(φ)=PY ,X (Y ≠φ (X))

To put this into a more familiar ensemble context, assume that φ(x) predicts
y=1 if φ(x)>0, else predicts -1. Then

L*(φ)=PY ,X (Y ≠sign(φ (X))) .

Let P(i|x)=P(Y=i|x) . Then

L*(φ)= I(φ (x)≤0)∫ P(1|x)P(dx)+ I(φ (x)>0)P∫ (−1|x)P(dx)

where I is the indicator function. Take finite combinations of ±1trees

 cm
m
∑ hm (x)

that converge to a non-positive function on the set P(1|x)<P(−1|x) and a
positive function on the complement of the set. Then the loss converges to

 min(P∫ (1|x),P(−1|x))P(dx) ,

which is the the Bayes risk.

In the following sections we adopt the convention that "all trees" refers to all
± 1 trees with T terminals nodes where T>D.

7

4. A Constructive Algorithm

The results in Section 3 are non-constructive. They assert existence, but give
no idea as to how to construct linear combinations of trees that converge to
a desired function. There is an algorithm, first introduced in Breiman[1997],
further elaborated in Breiman[1999] (and rediscovered many times) that offers
a constructive method for producing such sequences. The finite-dimensional
numerical optimization version of this algorithm has been around for a
while and is called the Gauss-Southwell method (see Forsyth and
Wasow[1963]).

The Gauss-Southwell method for minimizing a differentiable function
f (x1,...,xm) of m real variables goes this way: at a point x compute all the

partial derivatives ∂f (x1,...,xm)/∂xk . Let the minimum of these be at x j. .

Find the step of size α that minimizes f (x1,...,x j +α,...,xm) . Let the new x be

x1,...,x j +α,...,xm for the minimizing α value. If f is strictly convex on its

domain, this algorithm converges to the global minimum.

The analog arcing algorithm produces a sequence of linear combinations of
trees that minimize (under appropriate conditions) a given real valued target
function of the sequence. Just as the Gauss-Southwell method, it finds the
largest negative gradient at each x and then does a line minimization, but
there are an infinite number of gradient directions.

4.1 Arcing Minimization Algorithm

To find the coefficients of a sum of trees that minimizes

EXθ (cm1
∞∑ hm (x),x)

where θ(s,x) is real-valued, continuous and differentiable in s for each value
of x, proceed as follows--After M steps:

i) Compute the minimum over all trees h(x) of

EX [θs (cm1
M∑ hm (x),x)h(x)]

w h e r eθs is the partial with respect to s. Denote a minimizing tree by hM+1(x) .

ii) Find the α that minimizes

EXθ (cm1
M∑ hm (x)+αhM+1(x),x)

8

and let cM+1 equal the minimizing value of α .

iii) Repeat until convergence.

Re i), it is simple to show that there exist minimizing trees. Uniqueness is
difficult and may not hold.

As pointed out in Breiman[1997], this algorithm can be implemented with
finite data and reweighting of the training set.

4.2 Heuristic Proof of Convergence

A sketch of a convergence proof is given with strong assumptions When the
algorithm is applied in the next section to Adaboost, the assumptions will be
lifted.

Assume:
i) The domain of x is a closed finite rectangle.
ii) The functional EXθ(f (x),x) is strictly convex on the set of functions

i n L2(P)

iii) The sequence of functions sM (x)= cm1
M∑ hm(x) is sequentially

compact in L2(P) .
iv) The function θ(s,x) and its first and second derivatives with respect to

s are uniformly bounded.

From ii) there is a unique function s(x) minimizing EXθ(s(x),x) .

Theorem 2 Under the above assumptions, the sequence sM (x) converges
in L2(P) norm to s(x) .

proof: Suppose that the minimum value over all trees h of

1) EX [θs (sM ,x)h(x)]

is zero. Then the maximum value is also zero since the trees can be reversed.
Since linear combinations of trees are dense in L2(P) , then

EX [θs (sM ,x) f (x)] =0

for all functions f in L2(P) . This implies that for small ε and any f

EX [θ (sM +εf (x),x)]≈0 .

9

These are the first order necessary conditions for a minimum, The second

order are automatically satisfied by the convexity. Thus, sM equals the
minimizing function s .

If the iterations do not stop, let hM+1 be the minimizing tree at step M+1,

and −bM+1 the minimum value of 1). Now

2) EX [θ (sM +αhM+1 ,x)]≤θ0 −αbM+1 + Bα 2

where B is the upper bound of the 2nd partial of θ and θ0 =EXθ(sM ,x). From

2) it follows that the decrease in EXθ(sM ,x) given by the (M+1)st step is greater

than (bM+1)2 / 2B . Since the sum of the decreases must be finite, bM →0.

Take a subsequence sm that converges in 2-norm to a function g (assumption
iii). For any tree h,

EX [θs (sm ,x)h(x)]→0 .

At the same time

EX [θs (sm ,x)h(x)]→EX [θs (g,x)h(x)]

This gives the necessary conditions for the minimum and implies that g=s .

There, the entire sequence sM converges in norm to s.

However, the hard thing is showing the sequential compactness of the {sM}
sequence--a difficulty we have assumed away.

5 Adaboost Converges to the Bayes Risk

For a sequence of trees {hm} define a voting function as

φ(x)= cmm∑ hm(x)

and vote for class 1 if φ>0, else for class -1. As noted in Section 3, the

expected error for φ is

L*(φ)= I(φ (x)≤0)∫ P(1|x)P(dx)+ I(φ (x)>0)P∫ (−1|x)P(dx).

This is not a pleasant functional to try and minimize. Using the inequalities

3) I(φ≤0)≤exp(−φ), I(φ>0)≤exp(φ)

10

gives L*(φ)≤L(φ) where

4) L(φ)= exp(−φ (x))∫ P(1|x)P(dx)+ exp(φ (x))P∫ (−1|x)P(dx).

This functional has a more workable form and is the functional that
Adaboost minimizes using the arcing minimization algorithm given in
Section 4.

Two assumptions are made:

i) The domain of x is a closed finite D-dimensional rectangle.
ii) The function log(p(−1|x)/ p(1|x)) is continuous on this rectangle.

Let

r(x)=log(p(−1|x)/ p(1|x))/2 .

Then 4) can be rewritten as

L(φ)= cosh(∫ φ (x)+r(x))[p(1|x) p(−1|x)]P(dx)

Let the probability Q be defined by

 Q(dx)=[p(1|x) p(−1|x)]P(dx)/ [p(1|x) p(−1|x)]P(dx)∫

Up to a constant factor, then,

5) L(φ)= cosh(∫ φ (x)+r(x))Q(dx)

Note that P and Q differ only by multiplication by a bounded positive
function.

Apply the arcing algorithm to 5) building up a sum of trees for φ .

 sM (x)= cm1
M∑ hm (x)

Theorem 3 sM (x) converges in L2(P) norm to −r(x).

The proof is not difficult but has various details. It is deferred to Appendix I.

Proposition 4 The error in using −r(x)as a decision function is the Bayes risk.

11

proof: Look at the loss

L(φ)= I(−r(x)≤0)∫ P(1|x)P(dx)+ I(−r(x)>0)P∫ (−1|x)P(dx)

A simple computation shows that

L(φ)= min(P(−1|x),P(1|x))P(dx)∫

which is the Bayes risk.

The condition T>D is needed for r(x) to be equal to the limit of sums of trees.
If r(x) can be well-approximated by sums of smaller trees, then the arcing
algorithm using smaller trees will also converge to the Bayes rate. This may
help to understand why Adaboost using stumps sometimes gives excellent
results.

An open question is whether there are other algorithms of the arcing type
that converge to the Bayes risk. I conjecture that there are many. Instead of
using the exponential function in the bounds 3), one can use any
monotonically increasing function g that is one at the origin. Then in 4)
replace exp(−φ(x)) by g(−φ(x)) and exp(φ(x))by g(φ(x)) . If one can show that
the sequences of weighted sums of trees produced by the arcing algorithm
applied to this new loss function are sequentially compact, then it would
follow that these sequences converge to a function yielding the Bayes risk.

The device used to prove convergence in the exponential case does not
generalize to other functions--at least not easily. But I do not see why
sequential compactness should not hold for other functions beside the
exponential. If so, this may shed light on why, in the finite data case,
minimizing functions other than the exponential have given results
comparable to Adaboost. See, for instance, Mason et al[2000], Friedman et
al[1998], and Breiman[1998].

6. Random Forests

Random forests are formed by selecting i.i.d random vectors θ1,θ2 ,,,from a
parent distribution and forming trees h(x,θm) that depend on the value of the

vector θm . After forming M trees, the vote for y at x is defined as

1
M

I(y=
1

M
∑ h(x,θm))

As M→∞ the limiting value, a.s. in x, of the vote for y is Pθ (y=h(x,θ))

12

where Pθ is the probability under the parent distribution of θ (see

Breiman[1999]).

Although the tree construction is randomized, at each terminal rectangle R
of each tree, the decision whether to label R +1or -1 is made as follows:

Labeling Rule Label R as +1 if

P(1|x)|
R
∫ P(dx)≥ P(−1|x)|

R
∫ P(dx).

Otherwise as -1.

This rule corresponds to the finite data decision rule. Let D(x)=P(1|x)−P(−1|x).
For each θ let Rx (θ) be the terminal node containing x. Then the vote for
y=1 is

 Pθ (D(z)P(dz)≥0)
Rx (θ)

∫

and the vote for -1 is

Pθ (D(z)P(dz)<0)
Rx (θ)

∫

If the vote for +1 is >1/2, then the prediction is +1, else -1. Hence the error is

 L= I(∫ Pθ (D(z)P(dz)≥0)
Rx (θ)

∫ ≤1/2)P(1|x)P(dx)+

I(∫ Pθ (D(z)P(dz)<0)
Rx (θ)

∫ ≤1/2)P(−1|x)P(dx)

Now

Pθ (D(z)P(dz)≥0)
Rx (θ)

∫ ≤1/2⇔medianθ [D(z)P(dz)]≤0
Rx (θ)

∫

Replace the median by the mean; i.e. assume that

 medianθ [D(z)P(dz)]
Rx (θ)

∫ ≈Eθ [D(z)P(dz)]
Rx (θ)

∫ .

This approximation is probably accurate, but difficult to rigorously justify. Let

K(x,z) be the probability, under Pθ that x and z are in the same terminal
node. That is, let

13

6) K(x,z)=limN
1
N n=1

N
∑ I(x,z∈Rk (θn)

k=1

T
∑)

(see Appendix II for proof of convergence). Then

Eθ [D(z)P(dz)]
Rx (θ)

∫ = K(x,z)∫ D(z)P(dz) .

Kernel Properties

 i) K(x,z) is self-adjoint.
ii) K(x,x)=1
iii) K(x,z) is positive definite.
iv) K(x,z) does not depend on the class label of the terminal nodes
v) K(x,z) is continuous under weak conditions.

The first four properties can be seen from 6). For the fifth, see Appendix II.

 The error is now represented as:

7) L= I(∫ K(x,z)∫ D(z)P(dz)≤0)P(1|x)P(dx)+
I(∫ K(x,z)∫ D(z)P(dz)>0)P(−1|x)P(dx).

Random forests are thus revealed as kernel constructors. There is an
alternative procedure in which the kernel representation 7) is exact and not
an approximation. Instead of voting the forest, some researchers, i.e. Amit
and Geman[1997], grow random trees, each one of which gives an estimate for
the probability that x belongs to class j. These estimates are averaged over all
trees in the forest and x assigned to the class having the highest averaged
probability. For this averaging procedure representation 7) is exact.

I have experimented on a variety of data sets using both voting and averaging
and found little difference in generalization error between them.

7 A Kernel Example

To understand what is going on, it's useful to have a sense of what random
forest kernels look like. A exact expression for a kernel can be gotten under
the assumptions of a completely random construction:

14

Kernel Assumptions

i) The space of features is the M-dimensional unit cube, i.e. [0,1]M .
ii) The probability measure is uniform on the cube
iii) At each stage a random choice is made of which node to split next
iv) The split variable m is randomly selected from the M candidates.
v) The split point is uniform on the length of the mth side of the node.

Stating the result requires some definitions. Let S(k ,w) be the probability that
a Poisson variable with parameter w is greater than or equal to k and
P(k1,...,kM |K) a multinomial distribution for K trials with M outcomes at each
trial. each outcome having probability 1/M. Take K to have the distribution
of the sum of T-1 Bernoulli trials such that the probability of success at the
Nth trial is 1/n. Then

Theorem 4 Under the above assumptions, the kernel K(x,z) equals

8) P(k1,...,kM |K)
k1,...,kM

∑ S(km
m=1

M
∏ ,wm)P(K)

K
∑

where wm =log(1/|xm −zm |).

Proof: See Appendix III.

This kernel is symmetric in the |xm −zm |, that is, permuting their values
leaves the kernel unchanged. The kernel formula given in Theorem 4 is
complex and not enlightening as to the form of the kernel. But an
informative approximation can be made:

Corollary 5 For M ≥5 and T ≤exp(M /2) ,

9) K(x,z)≈exp(−λ |xm
1

M
∑ −zm |)

where λ =log(T)/ M .

For the derivation see Appendix III. The parameter λ has the critical role in
determining sharpness.

The level curves such that K(x,z)=h have the form

 |xm
1

M
∑ −zm| = −log(h)/λ

15

The expression of the left is the city-block distance between x and z. Thus, the
kernel centered at z has a pyramidal shape coming to a point at z, with the
pyramid oriented sat 45% angles to the coordinate axes. Note that the smaller

λ is, the wider the pyramid. Figure 1) is a graph of the kernel 8) for M=2,T=3.

 Figure 1

In general, the sharper the kernel, the better. In the limit of sharpness, the
loss in 7) goes to the Bayes risk. Sharpness is governed by the number of
terminal nodes--the more there are, the sharper the kernel. This may help
explain why the best results are gotten in random forests using the largest
trees.

We note that Cutler [1999] derived an analytic expression for the classifiers
given by ensembles they generated using extreme randomization, although
not quite as random as assumed above. Interestingly, the derivation is in the
finite data case.

8 Correlation~Symmetry, Strength~Skewness

Correlation and strength are concepts that have been useful in interpreting
the behavior of random forests (Amit and Geman[1997]. Breiman[1999], Amit
et al [1999], Cutler[1999]). Correlation is the average correlation between the
margins of two different members of the forest. Strength is the average
correct classification rate of the classifiers in the forest.

16

One can get a bound on the misclassification error of the forest in terms of
correlation and strength, but it is a loose bound. On the other hand, keeping
track of correlation and strength while varying the amount of randomness in
the forest shows that the bound is closely connected with the generalization
error.

The question is how these concepts translate or are translated from properties
of the kernel. We advance the conjecture that they are reflections of the
symmetry and skewness of the kernel, and illustrate this with some
discussion and experimental results.

Empirically, random forests give accurate classification even in high
dimensional problems. The reason for this is that the kernel can be a poor
estimate of D(z) as long as the error in the estimates of the boundary (the
D(z)=0 contours) does not cause much of an error increase above the Bayes
risk.

We argue that if the change in D(x) moving across the D(x)=0 boundaries is
not abrupt, the estimated boundary error is not large and the increase in error
small.

First: If the forest is completely random i.e. if the splits have no association
with the values of D(z) in the nodes, then the kernel will tend to be
symmetric in the sense that for fixed z, the kernel will be a function of d(x-z)
where this function depends only on |xm −zm |. Then the kernel will be
unbiased at linear boundaries in the sense that if a good approximation to
D(z) near a point x at which D(x)=0 is given by

D(z)=(x−z)⋅∇D(x)

then

K(x,z)∫ D(z)P(dz)≈0

and the kernel will track the sign of D(z) near the boundary.

Second: If S is the region such that:

8) K(x,z)∫ D(z)P(dz) > 0

and S* the region such that D(x)>0then the rise in error over the Bayes risk is
less than:

17

(9) |D(z)|P(dz)
S*∇S

∫

where S*∇S is the symmetric difference between the two regions.

Now S*∇S is the region between the estimated boundary and the true
boundary. Since D(z)=0 on the true boundary, then if D(z) is not rapidly
changing in the neighborhood of the boundary, and if the boundary estimate
does not differ too much from the true boundary, the increase in error will be
small.

To illustrate, we ran the kernel 8) in the two dimensional square with three
terminal nodes. Two Gaussions centered at (0,0) are used, one with standard
deviation .71 and the other with sd 1.36. Both are normalized to have
probability .5 on the square. The Bayes rate is 39.9%. The true boundaries
and the boundaries given by the kernel are shown in Figure 2.

The boundaries do not match, but error rate given by the kernel is only .6%
larger than the Bayes rate.

The problem, then, is with more abrupt changes near the boundary.
However, if D(z) is linear near the D(z)=0 boundary then the average over
the kernel will be zero. To illustrate we again ran the kernel 8) with T=3 on
the two dimensional problem with P(1|x)=1 if x1+x2 ≤1 and zero elsewhere.

18

The resulting boundary is shown in Figure 3 together with the true boundary,
Since they lie on top of each other, only one line is seen. The rise in error
over the Bayes risk is .3%.

0

.2

.4

.6

.8

1

x2

0 .2 .4 .6 .8 1

x1

Figure 3

But if the boundary is abrupt and non-linear as in this picture:

Figure 4

then the kernel average will not be zero on the D(z)=0 curve, and there will
be a bias toward class #-1 instances.

19

To illustrate this situation, we used T=3 and P(1|x)=1 if x1
2 +x2

2 ≤.49 and zero
elsewhere. The resulting boundary and the true boundary are shown in
Figure 5. The increase in error over the Bayes risk is 10.3%.

0

.2

.4

.6

.8

1

x2

0 .2 .4 .6 .8 1
x1

true boundary

kernel boundary

Figure 5

In the paper by Cutler1999], an extreme degree of randomization was used
resulting in low correlation and low strength. The results on almost all data
sets were competitive with Adaboost. But on the ringnorm data where the
boundary is spherical and somewhat abrupt, the generalization error was well
above that of algorithms that use more strength. The examples above may be
a clue to their results.

To eliminate this curvature bias, the kernel needs to be skewed. If an element
is introduced into the construction of the trees in the forest that favors purer
nodes, then x,z will tend to occur more frequently together if they are of the
same class. Thus, the kernel will tend to be skewed higher for instances x,z
which are both in neighborhoods of higher positive D values or lower
negative values. This is illustrated in Figure 6.

20

 Figure 6

Thus, skewing the kernel will eliminate some of the bias due to curved
boundaries.

To illustrate this, some strength or skewness was added was added and tested

on the example with T=3 and P(1|x)=1 if x1
2 +x2

2 ≤.49 , zero otherwise.
Similarities with the symmetric kernel are random choice of node to split and
random choice of variable to split on. The difference is that instead of the
split being uniformly distributed, the distribution was altered to favor cuts
near the optimal split. The optimal split of a node is the split that minimizes
the misclassification error. A triangular distribution was used for cut
selection with peak at the optimal cut and dropping to zero at the endpoints
of the node.

Since no analytic expression could be found for the kernel corresponding to
this regime, it was programmed on a 200x200 grid and run 5000 times. The
error dropped from 10.3% to 1.5%. The boundaries are graphed in Figure 7.

21

A good kernel for a problem has to balance symmetry against the skewness
needed to cope with nonlinear boundaries. More research is necessary in
this area. An eigen analysis of the kernel may be useful. A "perfect kernel"
would reproduce a constant multiple of D(z), but it is not at clear how this
could be accomplished by tree construction.

9. Discussion

The question is how much of the infinity theory applies to the practical issues
of finite data sets. There are some puzzling issues.

9.1 Adaboost

The theoretical results indicate that as the sample size goes to infinity, the
generalization error of Adaboost will converge to the Bayes risk. But on most
data sets I have run, Adaboost does not converge. Instead it's behavior
resembles an ergodic dynamical system. The mechanism producing this
behavior is not understood.

Another facet of Adaboost's behavior is that it is more of an equalizer. In
Adaboost, the instances most recently misclassified are more heavily
weighted to get the next classifier grown to focus on classifying them correctly.

22

For some time it was believed that the reason for the success of this
reweighting was to get the hard-to-classify instances classified correctly.

Recent work has shown that this is not the case. Adaboost is, instead, trying
to roughly equalize the proportion of weighted votes that are incorrect. That
is, it is trying to equalized the weighted fraction of times that each instance is
misclassified. Put another way, it is approximately equalizing the margins of
all of the instances. The weighting more heavily of instances recently
misclassified increases their proportion of correct classifications and when
they are brought into line Adaboost concentrates on other instances.

I also conjecture that it is this equalization property that gives Adaboost its
ergodicity. Consider a finite number of classifiers {hn}, each one having
having an associated misclassification set Qn . At each iteration the Qn
having the lowest weight (using the current normed weights) has its weight
inceased to 1/2 while instances in the complement have their weights
decreased. Thus, the Qn selected moves to the top of the weight heap while
other Qn move down until they reach the bottom of the heap, when they are
bounced to the top. It is this cycling among the Qn that produces the ergodic
behavior.

However, I do not understand the connection between the finite sample size
equalization and what goes on in the infinity case. Why equalization
combined with ergodicity produces low generalization error is a major
unsolved problem in Machine Learning.

9.2 Random Forests

Numbers of years ago, efforts were made to do classification doing kernel
density estimation. It didn't work out. Random forests also constructs a
kernel, but a different kind. It is not designed to estimate densities, but to
locate boundaries. Its appearance, through the medium of random forests, is
a bit of a surprise.

With random forests, there is a stronger tie to the infinity behavior. The
behavior in the finite sample and infinity situations appears more connected.
Adjusting strength and correlation gives the results that one would expect
from the infinity analysis. More work needs to be done. It would be
satisfying to have a theoretical expressions for the kernel when some strength
is applied to see how the skewness sets in.

Another puzzle is behavior for large dimension. Random forests has been
run on data sets with intrinsically large dimensionality i.e. 256 and 1000, and
has given low generalization error. The sample sizes are thin compared to
the dimensionalty, so the kernel spread, given the number of terminal nodes,

23

is large. Still, the results on locating boundaries in two dimensions given a
relatively large kernel spread, show that boundary determination may not be
all that sensitive to kernel spread.

References

Amit, Y. and Geman, D. [1997] Shape quantization and recognition with
randomized trees, Neural Computation 9,1545-1588

Amit, Y., Blanchard, G., and Wilder, K. [1999] Multiple Randomized
Classifiers: MRCL Technical Report, Department of Statistics,
University of Chicago

 Bauer, E. and Kohavi, R. [1999] An Empirical Comparison of Voting
Classification Algorithms, Machine Learning, 36, No. 1/2, 105-139

Bhulmann, P. and Yu, B. [2000] Explaining bagging, available at
www.stat.Berkeley.EDU/users/binyu/publications.html

Breiman,L.[1999] Prediction Games and Arcing Algorithms, Neural Computation,
11, 1493-1517

Breiman, L. [1998], Arcing Classifiers, (discussion paper) Annals of Statistics,
26, 801-824

Breiman, L. [1997] Arcing the Edge, Technical Report 486, Statistics Depart-
ment, University of California (available at www.stat.berkeley.edu)

Breiman. L.[1998a] Randomizing Outputs To Increase Prediction Accuracy.
Technical Report 518, May 1, 1998, Statistics Department, UCB (in press
Machine Learning)

Breiman,L. [1999] Random Forests, Technical Report, Statistics Department
UCB (available at www.stat.berkeley.edu)

Breiman, L. [1996], Bagging Predictors, Machine Learning, 26, No. 2, 123-140
Cutler, A. (1999). Fast Classification Using Perfect Random Trees.

Technical Report 5/99/99, Department of Mathematics and Statistics,
Utah State University

Drucker, H. and Cortes, C. [1995] Boosting decision trees, Advances in Neural
Information Processing Systems Vol. 8, pp. 479-485.

Dietterich, T. [1998] An Experimental Comparison of Three Methods for
Constructing Ensembles of Decision Trees: Bagging, Boosting and
Randomization, Machine Learning 1-22

Freund, Y. and Schapire, R. [1996] Experiments with a new boosting
algorithm, Machine Learning: Proceedings of the Thirteenth
International Conference, pp. 148-156

Friedman,J., Hastie,T., and Tibshirani,R.[1998] Additive logistic regression: a
statistical view of boosting. Technical Report, Statistics Department,
Stanford University (to be published, Annals of Statistics)

Mason,L., Baxter,J.,Bartlett,P. and Frean,M. [2000] Boosting algorithms as
gradient descent. Advances in Neural Information Processing Systems,
12, 512-518

24

Schapire, R. and Singer,Y.[1998] Improved boosting algorithms using
confidence-rated predictions, Proceedings of the Eleventh Annual
Conference on Computational Learning Theory

 Appendix 1. Proof of Theorem 3.

a) If the arcing algorithm stops at a finite M, then

sinh(∫ r(x)+sM (x))h(x)Q(dx)=0

for all trees h. Hence for all functions f in L2(P)

sinh(∫ r(x)+sM (x)) f (x)Q(dx)=0 ,

which implies that sM (x) equals −r(x) a.s.

b) If the algorithm continues indefinitely, let

 bM+1 =− inf h sinh(∫ r(x)+sM (x))h(x)Q(dx)

and hM+1 a minimizing tree. Some algebra show that the α minimizing

cosh(∫ r(x)+sM (x)+αhM+1(x))Q(dx)

is:

1) cM+1 = 1
2

log((1+bM+1)/(1−bM+1))

 =bM+1 +O(bM+1
2).

Denoting

IM = cosh(∫ r(x)+sM (x))Q(dx)

then

` IM+1
2 = IM

2 −bM+1
2

Since IM is bounded below, this implies that bm
2

1
∞∑ <∞ . We will use the

inequality

25

2) | sinh(∫ r(x)+sM (x))sM (x)Q(dx)|≤bM+1 cm1
M∑ .

c) There is a subsequence {m'} such that ||r+sm' ||→0. To show this,
note:

3) (bM+1 cm)2
1
M∑ ≤MbM+1

2 cm
2

1
M∑

Suppose lim inf M (bM+1 cm1
M∑)>0 , then since cm

2
1
∞∑ <∞, for all M sufficiently

large, bM+1
2 >a/ M , which cannot be. Thus, there is a subsequence such that

the left hand side of 2) goes to zero.

For f any finite sum of trees, sinh(∫ r(x)+sM (x)) f (x)Q(dx)→0. Since r(x) is

continuous and bounded, for any ε>0 there is a finite sum of trees r̃(x) such
that supx∈S |r(x)−r̃(x)|≤ε . Hence

4) | sinh(∫ r(x)+sM (x))r(x)Q(dx)|≤| sinh(∫ r(x)+sM (x))r̃ (x)Q(dx)|+
 ε |sinh(∫ r(x)+sM (x))|Q(dx)

The last term in 4) can be bounded by

ε cosh(∫ r(x)+sM (x))Q(dx)≤Cε ,

leading to the conclusion that sinh(∫ r(x)+sM (x))r(x)Q(dx)→0 . Thus,

sinh(∫ r(x)+sm' (x))(r(x)+sm' (x))Q(dx)→0 .

Since x sinh(x)≥x2, this proves assertion c).

d) On the full sequence ||r+sM ||→0. This follow by noting that
x sinh(x)≥cosh x−1. Hence, on the subsequence Im' →1. Since IM
is non-increasing in M, on the whole sequence IM →1. Now use

cosh x−1≥ x2
 to prove d).

Appendix II Continuity and Convergence

For a tree formed using the value θ of the random vector, let B(θ) be the
boundaries of all of the terminal nodes in the tree that are in the interior of
the domain of inputs.. For any x denote by d(x,B(θ)) the Euclidean distance
from x to the boundary. We impose on the tree formation process a
continuity condition.

26

Condition C v(ε)=supx Pθ (d(x,B(θ))<ε) →0 as ε→Θ

This condition keeps mass from piling up on the boundaries of the terminal
nodes.

Let Θ be the space of sequences
(
θ =(θ1,θ2 ,...) of the random vectors. Then:

Theorem: There is a set S⊂Θ with P(S)=1 such that for any sequence in S, for
all x,z,

1
N I(x∈

k
∑

n=1

N
∑ Rk (θn))I(z∈Rk (θn))→K(x,z)

where K (x,z) is jointly continuous in x,z,

Proof: Denote

WN (x,z,

(
θ)= 1

N I(x∈
k
∑

n=1

N
∑ Rk (θn))I(z∈Rk (θn))

Select S as follows: Take D to be countable and dense in the input domain.

Then let S be all sequences
(
θ such that

i) For all x,z∈D⊗D

 WN (x,z,
(
θ)→Eθ (x,z∈R(θ))=K(x,z)

ii) Take εn ↓ 0 . For all x∈D and all εn

1
N I(d(x,B(θn))<εnk

∑
n=1

N
∑)→Pθ (d(x,B(θ))<εn)

Since both conditions are countable, they can be satisfied on a set S of
probability one.

First: on D⊗D , K (x,z) is a continuous function. To see this, take xn ,zn→x,z
in D⊗D such that d(x,xn)≤εn and d(z,zn)≤εn . Use the inequality

 |I(x∈Rk (θ))I(z∈Rk (θ))− I(xn ∈Rk (θ))I(zn ∈Rk (θ))|≤
 I(d(x,B(θ))<εn)+ I(d(z,B(θ))<εn)

So by condition ii)

27

|K(x,z)−K(xn ,zn)|≤Pθ (d(x,B(θ))<εn)+Pθ (d(z,B(θ))<εn)

which proves the continuity.

Second: Now K(x,z) defined on D⊗D can be extended to a continuous
function on the whole rectangle of input space. Consider x,z not in D⊗D
and take xn ,zn→x,z such that xn ,zn are in D⊗D with d(x,xn)≤εn and
d(z,zn)≤εn . Then using the inequality

` |I(x∈Rk (θ))I(z∈Rk (θ))− I(xn ∈Rk (θ))I(zn ∈Rk (θ))|≤
I(d(xn ,B(θ))<εn)+ I(d(zn ,B(θ))<εn)

shows that for
(
θ∈S

 limsupN |WN (x,z,
(
θ)−WN (xn ,zn ,

(
θ)|≤2supx Pθ (d(x,B(θ))<εn).

This implies that WN (x,z,
(
θ)→K(x,z) .

Appendix III Proof of Theorem 4 and Corollary 5.

Given two points x and z, the problem is to find the probability that they lie in
the same terminal node, given that choices of the node to split on and the
variable to split on are random and the splits chosen to be uniformly
distributed on the current side of the node being split.

Theorem 4

Let the interval d = [xm , zm] and let d stand for both the interval and its

length. Suppose that the node containing x,z is split k times on the mth

variable at the points y1 , y2 ,. . ., yk . Then

 1) P(yk ∉d,yk−1∉d,...,y1∉d)= ⋅⋅⋅ p(dyk
yk ∉d

∫
y1∉d

∫ |yk−1)⋅⋅⋅p(dy1)

Now given yk−1 , yk is uniformly distributed over the interval [0,yk−1].
Hence

 P(yk ∉d |yk−1)=(1−d / yk−1).

The next step in the integration yields

28

1− d
yk−2

(1+log(yk−2
d))

Continuing for k steps evaluates the integral as

1−d 1
j!0

k−1
∑ (log(1

d)) j

Letting w=log(1/d), the integral is

S(k,w)=e−w w j
j!j=k

∞
∑

the probability that a Poisson variable with parameter w is greater than or
equal to k. Now, denote dm =|xm −zm | and wm =log(1/dm). Let P(k1,...,kM) be the
probability that in growing the tree to T terminal nodes, there are k1,...,kM
splits on the variables 1,...,M on the sides of the terminal node containing x,z.
Then the probability that none of these splits separates the points is:

2) P(k1,...,kM)
k1,...,kM

∑ S(km
m=1

M
∏ ,wm)

If the total number of splits on the node is K, then P(k1,...,kM |K) is a
multinomial distribution with probabilities 1/M. The distribution of K is
that of a sum of T-1 Bernoulli variables such that the nth on has probability
1/n of being one. This results in the statement of Theorem 4.

Corollary 5.

Consider M large, say M>5 and T ≤exp(M /2) . If there are currently N terminal
nodes, then the probability of selecting the node that x,z is in is 1/N. Further,

the probability of selecting the mth variable to split on is 1/M. So km is the
total achieved by T-1 trials, such that at each trial the probability is small. To
get an approximation to 2) assume that the k1,...,kM are independent Poissons
with the same parameter λ .

Now λ is the average probability of success at each trial times the number of
trials.. On the first trial, the probability of a hit is 1/M. On the second, 1/(2M).
The sum of the probability of hits, totaled over the T-1 trials, is

1
M

1
NN=1

T −1
∑ ≈ log(T)

M

29

Therefore, we take

 λ = log(T)
M .

Then, setting

U(λ ,w)=e−λ 1
k!0

∞
∑ λkS(k,w)

results in the approximation to 2):

U(
m=1

M
∏ λ ,wm).

Now:

3) U(λ ,w)=e−λ −w 1
k!0

∞
∑ λk 1

j!k

∞
∑ w j

Multiply 3) by exp(−ws)and integrate on s from 0 to ∞ , thereby taking the
Laplace transform of V on w and resulting in:

4) (e−λe
λ

s+1)/s .

Let

v(λ ,w)=e−(λ +w)Io(2 λw) .

Then 4) is recognizable as the Laplace transform of:

5) v(λ ,w)+ v(λ ,u)
0

w

∫ du .

Integate the 2nd term in 5) by parts using I0(0)=1to get

6) e−λ e−u
0

w

∫ I0
' (2 λu)du

As w→∞ 6)→1. Adding 1, subtracting 1 and taking logs gives that the log of
6) is approximated by

30

7) e−λ e−u
0

w

∫ I0
' (2 λu)du−1

Now, approximate exp(−λ)≈1−λ and argue that since I0
' (2 λu) is a slowly

increasing function, it can be replaced in the integral by it's value at the origin
which is λ . Using these approximations, 7) becomes

8) −λe−w −λ2 (1−e−w)

Neglecting the term in λ2 gives the result that the log of 5) is

9) −λd

leading directly to Corollary 5).

Since the steps from 5) to 9) seem to involve rather crude approximations,
we used numerical integration to evaluate the -log of 5) as a function of d for
d ranging from 0 to 1 and three values of λ , .1, .25. .5. The results are shown
in Figure III-1 They verify the accuracy of the approximation 9).

0

.1

.2

.3

.4

.5

.6

lo
g

5)

0 . 2 .4 .6 .8 1

d

λ=.5

λ=.25

λ=.1

Figure III-1

